PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fracture limit analysis of DP590 steel using single point incremental forming: experimental approach, theoretical modeling and microstructural evolution

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The single point incremental forming (SPIF) process is gaining special attention in the aerospace, biomedical and manufacturing industries for making intricate asymmetric components. In the present study, SPIF process has been performed for forming varied wall angle conical and pyramidal frustums using DP590 steel. Initially, the conventional stretch forming process has been performed for finding the fracture forming limit diagram (FFLD). Further, it has been validated with the limiting strains found using SPIF process. The conical and pyramidal frustums deformed near to the plane strain and biaxial region, respectively. The theoretical FFLD has been predicted using seven different ductile damage models. The effect of sheet anisotropy while predicting the fracture strains has been included using Hill 1948 and Barlat 1989 yielding functions. Among the used damage models, the Bao-Wierzbicki (BW) model along with Barlat 1989 yield criterion displayed the least error of 2.92% while predicting the fracture locus. The stress triaxiality in the different forming region has been thoroughly investigated and it has been found that the higher triaxiality value reveals high rate of accumulated damage which lead to early failure of the material in the respective region. The stress triaxiality and effective fracture strains have also been found to be significantly affected by the anisotropy. The micro-textural studies have also been performed and it has been found that the increase in local misorientations and shift in the textural components from γ-fiber to ε-fiber in the corner region of the frustums worked towards limiting the formability of material and ultimately leading towards the fracture of frustums.
Rocznik
Strony
138--157
Opis fizyczny
Bibliogr. 52 poz., fot., rys., wykr.
Twórcy
  • Department of Mechanical Engineering, BITS-Pilani, Hyderabad Campus, Hyderabad, India
  • Department of Mechanical Engineering, BITS-Pilani, Hyderabad Campus, Hyderabad, India
  • Department of Mechanical Engineering, BITS-Pilani, Hyderabad Campus, Hyderabad, India
  • Department of Mechanical Engineering, BITS-Pilani, Hyderabad Campus, Hyderabad, India
autor
  • Department of Mechanical Engineering, BITS-Pilani, Hyderabad Campus, Hyderabad, India
  • Department of Mechanical Engineering, GRIET, Hyderabad, India
Bibliografia
  • [1] Pandre S, Morchhale A, Kotkunde N, Singh SK. Influence of processing temperature on formability of thin-rolled DP590 steel sheet. Mater Manuf Processes. 2020;35:901–9. https:// doi. org/ 10. 1080/ 10426 914. 2020. 17438 54.
  • [2] Pandre S, Takalkar P, Morchhale A, Kotkunde N, Singh SK. Prediction capability of anisotropic yielding behaviour for DP590 steel at elevated temperatures. Adv Mater Process Technol. 2020;6:476–84. https:// doi. org/ 10. 1080/ 23740 68X. 2020. 17286 47.
  • [3] Basak S, Katiyar BS, Orozco-Gonzalez P, Baltazar-Hernandez VH, Arora KS, Panda SK. Microstructure, forming limit diagram, and strain distribution of pre-strained DP-IF steel tailor–welded blank for auto body application. Int J Adv Manuf Technol. 2019;104:1749–67. https:// doi. org/ 10. 1007/ s00170- 019- 03938-1.
  • [4] Pandre S, Kotkunde N, Takalkar P, Morchhale A, Sujith R, Singh SK. Flow stress behavior, constitutive modeling, and microstructural characteristics of DP 590 steel at elevated temperatures. J Mater Eng Perform. 2019;28:7565–81. https:// doi. org/ 10. 1007/ s11665- 019- 04497-y.
  • [5] Voswinckel H, Bambach M, Hirt G. Improving geometrical accuracy for flanging by incremental sheet metal forming. Int J Mater Form. 2015;8:391–9. https:// doi. org/ 10. 1007/ s12289- 014- 1182-y.
  • [6] Duflou JR, Verbert J, Belkassem B, Gu J, Sol H, Henrard C, Habraken AM. Process window enhancement for single point incremental forming through multi-step toolpaths. CIRP Ann. 2008;57:253–6. https:// doi. org/ 10. 1016/j. cirp. 2008. 03. 030.
  • [7] Lu B, Ou H, Shi SQ, Long H, Chen J. Titanium based cranial reconstruction using incremental sheet forming. Int J Mater Form. 2016;9:361–70. https:// doi. org/ 10. 1007/ s12289- 014- 1205-8.
  • [8] Basak S, Prasad KS, Sidpara AM, Panda SK. Single point incremental forming of AA6061 thin sheet: calibration of ductile fracture models incorporating anisotropy and post forming analyses. Int J Mater Form. 2019;12:623–42. https:// doi. org/ 10. 1007/ s12289- 018- 1439-y.
  • [9] Isik K, Silva MB, Tekkaya AE, Martins PAF. Formability limits by fracture in sheet metal forming. J Mater Process Technol. 2014;214:1557–65. https:// doi. org/ 10. 1016/j. jmatp rotec. 2014. 02. 026.
  • [10] Morchhale A, Kotkunde N, Singh SK. Deep drawing behavior of IN625 alloy under the influence of different process parameters. IOP Conf Ser. 2020;967:012090. https:// doi. org/ 10. 1088/ 1757-899X/ 967/1/ 012090.
  • [11] Abedini A, Butcher C, Worswick MJ. Fracture characterization of rolled sheet alloys in shear loading: studies of specimen geometry, anisotropy, and rate sensitivity. Exp Mech. 2017;57:75–88. https:// doi. org/ 10. 1007/ s11340- 016- 0211-9.
  • [12] Bai Y, Wierzbicki T. A comparative study of three groups of ductile fracture loci in the 3D space. Eng Fract Mech. 2015;135:147–67. https:// doi. org/ 10. 1016/j. engfracmech. 2014. 12. 023.
  • [13] Habibi N, Zarei-Hanzaki A, Abedi H-R. An investigation into the fracture mechanisms of twinning-induced-plasticity steel sheets under various strain paths. J Mater Process Technol. 2015;224:102–16. https:// doi. org/ 10. 1016/j. jmatp rotec. 2015. 04. 014.
  • [14] Park N, Huh H, Lim SJ, Lou Y, Kang YS, Seo MH. Fracture-based forming limit criteria for anisotropic materials in sheet metal forming. Int J Plast. 2017;96:1–35. https:// doi. org/ 10. 1016/j. ijplas. 2016. 04. 014.
  • [15] Nakazima K, Kikuma T, Hasuka K. Study on the formability of steel sheets. Yawata Tech Rep. 1968;264:8517–30.
  • [16] Badrish A, Morchhale A, Kotkunde N, Singh SK. Influence of material modeling on warm forming behavior of nickel based super alloy. Int J Mater Form. 2020;13:445–65. https:// doi. org/ 10. 1007/ s12289- 020- 01548-x.
  • [17] Morchhale A, Kotkunde N, Singh SK. Prediction of flow stress and forming limits for IN625 at elevated temperature using the theoretical and neural network approach. Mater Perform Charact. 2021;10:146–65. https:// doi. org/ 10. 1520/ MPC20 200153.
  • [18] Dharavath B, Morchhale A, Singh SK, Kotkunde N, Naik MT. Experimental determination and theoretical prediction of limiting strains for ASS 316L at hot forming conditions. J Mater Eng Perform. 2020. https:// doi. org/ 10. 1007/ s11665- 020- 04968-7.
  • [19] Mahalle G, Morchhale A, Kotkunde N, Gupta AK, Singh SK, Lin YC. Forming and fracture limits of IN718 alloy at elevated temperatures: experimental and theoretical investigation. J Manuf Process. 2020;56:482–99. https:// doi. org/ 10. 1016/j. jmapro. 2020. 04. 070.
  • [20] Martins PAF, Bay N, Skjoedt M, Silva MB. Theory of single point incremental forming. CIRP Ann. 2008;57:247–52. https:// doi. org/ 10. 1016/j. cirp. 2008. 03. 047.
  • [21] Silva MB, Skjoedt M, Atkins AG, Bay N, Martins PAF. Single-point incremental forming and formability—failure diagrams. J Strain Anal Eng Design. 2008;43:15–35. https:// doi. org/ 10. 1243/ 03093 247JS A340.
  • [22] Mendiguren J, Galdos L, Saenz de Argandoña E. On the plastic flow rule formulation in anisotropic yielding aluminium alloys. Int J Adv Manuf Technol. 2018;99:255–74. https:// doi. org/ 10. 1007/ s00170- 018- 2512-x.
  • [23] Hou Y, Min J, Stoughton TB, Lin J, Carsley JE, Carlson BE. A non-quadratic pressure-sensitive constitutive model under non-associated flow rule with anisotropic hardening: Modeling and validation. Int J Plast. 2020;135:102808. https:// doi. org/ 10. 1016/j. ijplas. 2020. 102808.
  • [24] Simo JC, Hughes TJR. Computational inelasticity. New York: Springer-Verlag; 1998. https:// doi. org/ 10. 1007/ b98904.
  • [25] Safaei M, Yoon JW, De Waele W. Study on the definition of equivalent plastic strain under non-associated flow rule for finite element formulation. Int J Plast. 2014;58:219–38. https:// doi. org/ 10. 1016/j. ijplas. 2013. 09. 010.
  • [26] Stoughton TB, Yoon JW. Anisotropic hardening and non-associated flow in proportional loading of sheet metals. Int J Plast. 2009;25:1777–817. https:// doi. org/ 10. 1016/j. ijplas. 2009. 02. 003.
  • [27] Stoughton TB. A non-associated flow rule for sheet metal forming. Int J Plast. 2002;18:687–714. https:// doi. org/ 10. 1016/ S0749-6419(01) 00053-5.
  • [28] Stoughton TB, Yoon JW. Review of Drucker’s postulate and the issue of plastic stability in metal forming. Int J Plast. 2006;22:391–433. https:// doi. org/ 10. 1016/j. ijplas. 2005. 03. 002.
  • [29] Hill R, Orowan E. A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond. 1948;193:281–97. https:// doi. org/ 10. 1098/ rspa. 1948. 0045.
  • [30] Badrish A, Morchhale A, Kotkunde N, Singh SK. Parameter optimization in the thermo-mechanical V-bending process to minimize springback of inconel 625 alloy. Arab J Sci Eng. 2020;45:5295–309. https:// doi. org/ 10. 1007/ s13369- 020- 04395-9.
  • [31] Kotkunde N, Badrish A, Morchhale A, Takalkar P, Singh SK. Warm deep drawing behavior of Inconel 625 alloy using constitutive modelling and anisotropic yield criteria. Int J Mater Form. 2019;13:355–69. https:// doi. org/ 10. 1007/ s12289- 019- 01505-3.
  • [32] Park T, Chung K. Non-associated flow rule with symmetric stiffness modulus for isotropic-kinematic hardening and its application for earing in circular cup drawing. Int J Solids Struct. 2012;49:3582–93. https:// doi. org/ 10. 1016/j. ijsol str. 2012. 02. 015.
  • [33] Barlat F, Lian K. Plastic behavior and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions. Int J Plast. 1989;5:51–66. https:// doi. org/ 10. 1016/ 0749- 6419(89) 90019-3.
  • [34] Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci. 2004;46:81–98. https:// doi. org/ 10. 1016/j. ijmec sci. 2004. 02. 006.
  • [35] Lee YW. Fracture prediction in metal sheets. Massachusetts Institute of Technology. 2005. https:// dspace. mit. edu/ handle/ 1721.1/ 33560. Accessed Nov 20 2020.
  • [36] Gorji M, Berisha B, Hora P, Barlat F. Modeling of localization and fracture phenomena in strain and stress space for sheet metal forming. Int J Mater Form. 2016;9:573–84. https:// doi. org/ 10. 1007/ s12289- 015- 1242-y.
  • [37] Freudenthal AM, Geiringer H. The mathematical theories of the inelastic continuum. In: Flügge S, editor. Elasticity and plasticity/Elastizität Und Plastizität. Berlin: Springer; 1958. p. 229–433. https:// doi. org/ 10. 1007/ 978-3- 642- 45887-3_3.
  • [38] Clift SE, Hartley P, Sturgess CEN, Rowe GW. Fracture prediction in plastic deformation processes. Int J Mech Sci. 1990;32:1–17. https:// doi. org/ 10. 1016/ 0020- 7403(90) 90148-C.
  • [39] Cockcroft MG, Latham DJ. Ductility and the workability of metals. J Inst Metals. 1968;96:33–9.
  • [40] Tarigopula V, Hopperstad OS, Langseth M, Clausen AH, Hild F, Lademo O-G, Eriksson M. A study of large plastic deformations in dual phase steel using digital image correlation and FE analysis. Exp Mech. 2008;48:181–96. https:// doi. org/ 10. 1007/ s11340- 007- 9066-4.
  • [41] Oh SI, Chen CC, Kobayashi S. Ductile Fracture in Axisymmetric Extrusion and Drawing—Part 2: Workability in Extrusion and Drawing. J Eng Ind. 1979;101:36–44.
  • [42] Brozzo P, Deluca B, Rendina R. A new method for the prediction of formability limits in metal sheets. Proceedings of 7th Biennal Conference IDDR. 1972.
  • [43] Rice JR, Tracey DM. On the ductile enlargement of voids in triaxial stress fields*. J Mech Phys Solids. 1969;17:201–17. https:// doi. org/ 10. 1016/ 0022- 5096(69) 90033-7.
  • [44] Robertson JH. Elements of X-ray diffraction by BD Cullity. International Union of Crystallography; 1979.
  • [45] Bunge H-J. X-ray texture analysis in materials and earth sciences. Eur J Mineral. 1997;9:735–62.
  • [46] Han S, Choi S, Choi J, Seong H, Kim I. Effect of hot-rolling processing on texture and r-value of annealed dual-phase steels. Mater Sci Eng A. 2010;527:1686–94. https:// doi. org/ 10. 1016/j. msea. 2009. 11. 016.
  • [47] Choi S, Kim E, Woo W, Han SH, Kwak JH. The effect of crystallographic orientation on the micromechanical deformation and failure behaviors of DP980 steel during uniaxial tension. Int J Plast. 2013;45:85–102. https:// doi. org/ 10. 1016/j. ijplas. 2012. 11. 013.
  • [48] Raabe D, Lucke K. Rolling and Annealing Textures of BCC Metals. Material Science Forum. 1994; 157-162:597–610. https:// doi. org/ 10. 4028/ www. scien tific. net/ MSF. 157- 162. 597.
  • [49] Wani IS, Sathiaraj GD, Ahmed MZ, Reddy SR, Bhattacharjee PP. Materials Characterization Evolution of microstructure and texture during thermo-mechanical processing of a two phase Al 0.5CoCrFeMnNi high entropy alloy. Mater Charact. 2016;118:417–24. https:// doi. org/ 10. 1016/j. match ar. 2016. 06. 021.
  • [50] Basak S, Prasad KS, Mehto A, Bagchi J, Ganesh YS, Mohanty S, Sidpara AM. Parameter optimization and texture evolution in single point incremental sheet forming process. J Eng Manuf. 2019. https:// doi. org/ 10. 1177/ 09544 05419 846001.
  • [51] Zaefferer S, Romano P, Friedel F. EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels. J Microsc. 2008;230:499–508. https:// doi. org/ 10. 1111/j. 1365- 2818. 2008. 02010.x.
  • [52] Zhong Y, Yin F, Sakaguchi T, Nagai K, Yang K. Dislocation structure evolution and characterization in the compression deformed Mn–Cu alloy. Acta Mater. 2007;55:2747–56. https:// doi. org/ 10. 1016/j. actam at. 2006. 12. 012.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ce09a64-4462-4b2c-8338-9c73cdae4db7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.