PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Classification of Seizure Types Using Random Forest Classifier

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Epilepsy is one of the most common mental disorders in the world, affecting 65 million people. The prevalence in Arab countries of Epilepsy is estimated at 174 per 100,000 individuals, and in Saudi Arabia is 6.54 per 1,000 individuals. Epilepsy seizures have different types, and each patient needs to have a treatment plan according to the seizure type. Hence, accurate classification of seizure type is an essential part of diagnosing and treating epileptic patients. In this paper, features based on fast Fourier transform from EEG montages are used to classify different types of seizures. Since the distribution of classes is not uniform and the dataset suffers from severe imbalance. Various algorithms are used to under-sample the majority class and over-sample the minority classes. Random forest classifier produced classification accuracy of 96% to differentiate three types of seizures from the healthy EEG reading.
Słowa kluczowe
Twórcy
autor
  • Department of Computer Science Umm Alqura University, Makkah, Saudi Arabia
  • Department of Computer Science Umm Alqura University, Makkah, Saudi Arabia
Bibliografia
  • 1. N.I. of Neurological Disorders and S. (US), Seizures and Epilepsy: Hope Through Research. National Institute of Neurological Disorders and Stroke. National Institutes. 2004;4.
  • 2. WHO. Epilepsy. 2019. https://www.who.int/health-topics/epilepsy.
  • 3. Shihata S.S., Abdullah T.S., Alfaidi A.M., Alasmari A.A., Alfaidi T.M., Bifari A.E., Jamal W.H., Rizk H.A. Knowledge, perception and attitudes toward Epilepsy among medical students at King Abdulaziz University, SAGE open medicine. 2021;9:2050312121991248.
  • 4. Paul Y. Various epileptic seizure detection techniques using biomedical signals – a review. Brain informatics. 2018;5(2):1–19.
  • 5. Smith S. EEG in the diagnosis, classification, and management of patients with Epilepsy. Journal of Neurology, Neurosurgery & Psychiatry 2015;76(2):2–7.
  • 6. Lin Lin Lee V., Kar Meng Choo B., Chung Y.S., Kundap U.P., Kumari Y., Shaikh M. et al. Treatment, therapy and management of metabolic Epilepsy – a systematic review. International journal of molecular sciences. 2018;19(3):871.
  • 7. Roy S., Kiral-Kornek I., Harrer S. Deep learning enabled automatic abnormal EEG identification, in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2018;2756–2759.
  • 8. Kiral-Kornek I., Roy S., Nurse E., Mashford B., Karoly P., Carroll T., Payne D., Saha S., Baldassano S., O’Brien T. et al. Epileptic seizure prediction using big data and deep learning: toward a mobile system. EBioMedicine. 2018;27:103–111.
  • 9. Golmohammadi M., Ziyabari S., Shah V., de Diego S.L., Obeid I. Picone J. Deep architectures for automated seizure detection in scalp EEGs, arXiv preprint arXiv. 2017;1712.09776
  • 10. Fisher R.S., Boas W.V.E., Blume W., Elger C., Genton P., Lee P., Engel Jr J. Epileptic seizures and Epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005;46(4):470–472.
  • 11. Duan L., Lian Z., Chen J., Qiao Y., Miao J., Li M. Classification of epilepsy period based on combination feature extraction methods and spiking swarm intelligent optimization algorithm. Concurrency and Computation: Practice and Experience. 2020;e5550.
  • 12. Guti´errez F.J.M., Roman M.D. Albert D.C. Electro-clinical analysis of epilepsy patients with generalized seizures on adjunctive perampanel treatment. Epilepsy Research. 2020;165:106378.
  • 13. Trinka E., Tsong W., Toupin S., Patten A., Wilson K., Isojarvi J., James D. A systematic review and indirect treatment comparison of perampanel versus brivaracetam as adjunctive therapy in patients with focal-onset seizures with or without secondary generalization, Epilepsy Research. 2020;166:106403.
  • 14. Alarcao S.M., Fonseca M.J. Emotions recognition using EEG signals: A survey. IEEE Transactions on Affective Computing. 2017;10(3):374–393.
  • 15. Houssein E.H., Hassanien A.E., Ismaeel A.A., EEG signals classification for epileptic detection: a review, in: Proceedings of the Second International Conference on Internet of Things, Data and Cloud Computing. 2017;1–9.
  • 16. Acharya U.R., Fujita H., Sudarshan V.K., Bhat S., Koh J.E. Application of entropies for automated diagnosis of Epilepsy using EEG signals: A review. Knowledge-based systems. 2015;88:85–96.
  • 17. Harati A., Lopez S., Obeid I., Picone J., Jacobson M., Tobochnik S. The TUH EEG CORPUS: A big data resource for automated EEG interpretation, in: 2014 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). IEEE. 2014;1–5.
  • 18. Jaiswal A.K., Banka H. Local pattern transformation based feature extraction techniques for classification of epileptic EEG signals. Biomedical Signal Processing and Control. 2017;34:81–92.
  • 19. Niknazar H., Mousavi S.R., Niknazar M., Mardanlou V., Coelho B.N. Performance analysis of EEG seizure detection features. Epilepsy Research. 2020;167:106483.
  • 20. Yu F. & H.H., Semantic content analysis and annotation of histological images. Computers in Biology and Medicine. 2008;38(6):635–649.
  • 21. Yang S., Li B., Zhang Y., Duan M., Liu S., Zhang Y., Feng X., Tan R., Huang L., Zhou F. Selection of features for patient-independent detection of seizure events using scalp EEG signals. Computers in biology and medicine. 2020;119:103671.
  • 22. Wulandari D.P., Putriz N.G., Suprapto Y.K., Purnami S.W., Juniani A.I. Islamiyah W.R. Epileptic Seizure Detection Based on Bandwidth Features of EEG Signals. Procedia Computer Science. 2019;161:568–576.
  • 23. Deriche M., Arafat S., Al-Insaif S., Siddiqui M. Eigenspace time frequency based features for accurate seizure detection from EEG data. IRBM. 2019;40(2):122–132.
  • 24. Dash D.P., Kolekar M.H., Jha K. Multi-channel EEG based automatic epileptic seizure detection using iterative filtering decomposition and Hidden Markov Model. Computers in biology and medicine. 2020;116:103571.
  • 25. Sharma M., Patel S., Acharya U.R. Automated detection of abnormal EEG signals using localized wavelet filter banks. Pattern Recognition Letters. 2020;133:188–194.
  • 26. Ullah I., Hussain M., Aboalsamh H. et al. An automated system for epilepsy detection using EEG brain signals based on deep learning approach. Expert Systems with Applications. 2018;107:61–71.
  • 27. Nkengfack L.C.D., Tchiotsop D., Atangana R., Louis-Door V., Wolf D. EEG signals analysis for epileptic seizures detection using polynomial transforms, linear discriminant analysis and support vector machines. Biomedical Signal Processing and Control. 2020;62:102141.
  • 28. Alickovic E., Kevric J., Subasi A., Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomedical signal processing and control. 2018;39:94–102.
  • 29. Wei X., Zhou L., Zhang Z., Chen Z., Zhou Y. Early prediction of epileptic seizures using a long-term recurrent convolutional network. Journal of neuroscience methods. 2019;327:108395.
  • 30. Usman S.M., Khalid S., Bashir Z. Epileptic seizure prediction using scalp electroencephalogram signals. Biocybernetics and Biomedical Engineering. 2021;41(1):211–220.
  • 31. Khan H., Marcuse L., Fields M., Swann K., Yener B. Focal onset seizure prediction using convolutional networks. IEEE Transactions on Biomedical Engineering. 2017;65(9):2109–2118.
  • 32. Truong N.D., Nguyen A.D., Kuhlmann L., Bonyadi M.R., Yang J., Ippolito S., Kavehei O. Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Networks. 2018;105:104–111.
  • 33. Obeid I. & Picone J. The temple university hospital EEG data corpus. Frontiers in neuroscience. 2016;10:196.
  • 34. Harati A., Lopez S., Obeid I., Picone J., Jacobson M.P., Tobochnik S. The TUH EEG CORPUS: A big data resource for automated EEG interpretation, in: 2014 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). 2014;1–5. DOI: 10.1109/SPMB.2014.7002953.
  • 35. Shah V., Von Weltin E., Lopez S., McHugh J.R., Veloso L., Golmohammadi M., Obeid I., Picone J. The temple university hospital seizure detection corpus, Frontiers in neuroinformatics. 2018;12:83.
  • 36. Parks T.W. & Burrus C.S. Digital filter design. Wiley-Interscience; 1987.
  • 37. Crochiere R. A general program to perform sampling rate conversion of data by rational ratios Programs for Digital Signal Processing ed AC Schell et al, New York. IEEE Press; 1979.
  • 38. Kubat M., Matwin S. et al., Addressing the curse of imbalanced training sets: one-sided selection, in: Icml. 1997;97:179–186.
  • 39. Yen S.J. & Lee Y.S., Cluster-based undersampling approaches for imbalanced data distributions. Expert Systems with Applications. 2009;36(3):5718–5727.
  • 40. Galar M., Fernandez A., Barrenechea E., Herrera F. EUSBoost: Enhancing ensembles for highly imbalanced datasets by evolutionary undersampling. Pattern recognition. 2013;46(12):3460–3471.
  • 41. Spelmen V.S. & Porkodi R. A review on handling imbalanced data, in: 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT). IEEE. 201;1–11.
  • 42. Vuttipittayamongkol P., Elyan E., Petrovski A., Jayne C. Overlap-based undersampling for improving imbalanced data classification, in: International Conference on Intelligent Data Engineering and Automated Learning. Springer. 2018;689–697.
  • 43. Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P. SMOTE: synthetic minority over-sampling technique, Journal of artificial intelligence research. 2002;16:321–357.
  • 44. Han H., Wang W.Y., Mao B.H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning, in: International conference on intelligent computing, Springer. 2005;878–887.
  • 45. He H., Bai Y., Garcia E.A., Li S., ADASYN: Adaptive synthetic sampling approach for imbalanced learning, in: 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence). IEEE. 2008;1322–1328.
  • 46. Rout N., Mishra D., Mallick M.K. Handling imbalanced data: a survey, in: International Proceedings on Advances in Soft Computing, Intelligent Systems and Applications. Springer; 2018;431–443.
  • 47. Breiman L., Random forests, Machine learning. 2001;45(1):5–32.
  • 48. Schindler K., Leung H., Elger C.E., Lehnertz K. Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain. 2017;130(1):65–77.
  • 49. Kose U. An ant-lion optimizer-trained artificial neural network system for chaotic electroencephalogram (EEG) prediction. Applied Sciences. 2018;8(9):1613.
  • 50. Finnigan S., van Putten M.J. EEG in ischaemic stroke: quantitative EEG can uniquely inform subacute prognoses and clinical management. Clinical neurophysiology. 2013;124(1):10–19.
  • 51. Lodder S.S. & Van Putten M.J. Quantification of the adult EEG background pattern. Clinical neurophysiology. 2013;124(2):228–237.
  • 52. Milton J. & Jung P. Epilepsy as a dynamic disease, Springer Science & Business Media; 2013.
  • 53. Savadkoohi M., Oladunni T., Thompson L. A machine learning approach to epileptic seizure prediction using Electroencephalogram (EEG) Signal. Biocybernetics and Biomedical Engineering. 2020;40(3):1328–1341.
  • 54. Prathaban B.P., Balasubramanian R. Dynamic learning framework for epileptic seizure prediction using sparsity based EEG Reconstruction with Optimized CNN classifier. Expert Systems with Applications. 2021;170:114533.
  • 55. Wei Z., Zou J., Zhang J., Xu J. Automatic epileptic EEG detection using convolutional neural network with improvements in time-domain. Biomedical Signal Processing and Control. 2019;53:101551.
  • 56. Sudalaimani C., Sivakumaran N., Elizabeth T.T., Rominus V.S. Automated detection of the preseizure state in EEG signal using neural networks, biocybernetics and biomedical engineering. 2019;39(1):160–175.
  • 57. Acharya U.R., Oh S.L., Hagiwara Y., Tan J.H.,Adeli H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals, Computers in biology and medicine. 2018;100:270–278.
  • 58. Tsiouris K.M., Pezoulas V.C., Zervakis M., Konitsiotis S., Koutsouris D.D., Fotiadis D.I., A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals, Computers in biology and medicine. 2018;99:24–37.
  • 59. Montans F.J., Chinesta F., Gomez-Bombarelli R., Kutz J.N. Data-driven modeling and learning in science and engineering. Comptes Rendus M´ecanique. 2019;347(11):845–855.
  • 60. Zeiler M.D., Fergus R. Visualizing and understanding convolutional networks, in: European conference on computer vision. Springer; 2014;818–833.
  • 61. Rajaguru H. & Prabhakar S.K., KNN Classifier and K-Means Clustering for Robust Classification of Epilepsy from EEG Signals. A Detailed Analysis; 2017.
  • 62. Guler I. & Ubeyli E.D., Multiclass support vector machines for EEG-signals classification, IEEE transactions on information technology in biomedicine. 2007;11(2):117–126.
  • 63. Chen T., Guestrin C., Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016;785–794.
  • 64. Wijnhoven R.G. & de With P. Fast training of object detection using stochastic gradient descent, in: 2010 20th International Conference on Pattern Recognition. IEEE. 2015;424–427.
  • 65. Roy S., Asif U., Tang J., Harrer S. Seizure type classification using EEG signals and machine learning: Setting a benchmark, in: 2020 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). IEEE. 2020;1–6.
  • 66. Lyon D. The Discrete Fourier Transform, part 6: Cross-correlation. J. Object Technol. 2010; 9(2):17–22.
  • 67. Rao K.R., Kim D.N., Hwang J.J. Fast Fourier transform-algorithms and applications, Springer Science & Business Media; 2011.
  • 68. Shaker M.M. EEG waves classifier using wavelet transform and Fourier transform. Brain. 2016;2(3).
  • 69. Zazzaro G., Cuomo S., Martone A., Montaquila R.V., Toraldo G., Pavone L. EEG signal analysis for epileptic seizures detection by applying data mining techniques. Internet of Things. 2019;100048.
  • 70. Boser B.E., Guyon I.M., Vapnik V.N. A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory. 1992;144–152.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cdd70da-d9fb-47af-aee2-0c5f6991b2fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.