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Abstract. In this paper critical buckling loads for axially functionally graded (FG) beams 

are studied. It is assumed that material properties of the beam vary exponentially through 

the axial direction. Solutions are derived for three types of boundary conditions: a beam 

that is clamped at both ends, pinned at both ends and a beam that is clamped at one end 

and pinned at the other. 
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Introduction 

Functionally graded (FG) beams are composed of two or more materials and  

are characterized by a continuous variance in their material properties in the pre-

ferred direction. It is well known that beams are structural elements which carry 

compressive load. When compressive load crosses a critical value, elastic beam 

deviates from an original equilibrium state and buckling occurs. A list of papers 

on buckling aspects of the homogeneous structures is very extensive. For example 

Kukla and Skalmierski [1] presented the solution to the problem of vibrations of 

an Euler-Bernoulli beam, which is loaded by an axial force varying along the length 

of the beam. Exact mathematical solutions for buckling of structural members 

for various cases of columns, beams, arches, rings, plates and shells are shown 

in Wang et al. [2]. The buckling analysis of the functionally graded beams is 

the current field of research. Singh and Li [3] surveyed the stability of axially FG 

tapered beams by modelling a non-uniform beam as a set of uniform segments 

and solving a transcendental equation to compute the critical buckling load. The 

buckling behavior of axially non-uniform elastically restrained beams was studied 

by Huang and Luo [4]. By expanding the mode shapes as a power series, they trans- 

formed the governing differential equations with variable coefficients to a system 

of algebraic equations. The free vibration and stability of axially functionally 

graded tapered Euler-Bernoulli were analyzed by Shahba and Rajasekaran [5]. 

The solution to the problem was obtained by using a differential transform element 

method and differential quadrature element method of lowest order. The finite 
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element approach to the free vibration and stability analysis of axially functionally 

graded tapered Timoshenko beams was applied by Shahba et al. [6]. 

In the present study the stability analysis of axially graded beams with a distrib-

uted axial load is made. It is assumed that the changes of material properties as 

well as the axial load of the beam have an exponential form. The obtained analyti-

cal solutions of the buckling analysis for clamped-clamped, pinned-pinned and 

clamped-pinned beams are used for numerical computations. 

1. Formulation of the problem 

Consider an axially graded and non-uniform beam of length L (along the x  

direction) having moment of inertia ( )xI  and modulus of elasticity ( )xE , which is 

loaded by an axial force ( )xP  varying along the length of the beam. According to 

the Euler-Bernoulli beam theory, the differential equation that governs the trans-

verse displacement w is given by 
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In this paper it is assumed that 
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where 0
D  is a reference value of EI at 0=x , 0

P  is a reference value of P at 0=x  

and β  is the dimensionless parameter. Substituting (2) into (1) and introducing 

non-dimensional variables 
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we can change the governing equation (1) into 
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After some transformations equation (4) can be written in the form 
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Under assumption λβ <
2 , the general solution of equation (5) has the following 

form 

 ( ) ,10,sincos
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where 2βλδ −= , RC
i
∈ , 4,...,1=i . In order to determine critical buckling 

loads of axially functionally graded beams solution (6) has to be applied to certain 

boundary conditions. 

2. Solution of the problem 

In this section we will consider three types of boundary conditions: 

– clamped-clamped beams (C-C) 
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– pinned-pinned beams (P-P) 
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– clamped-pinned beams (C-P) 
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By applying one of the system of boundary conditions (7)-(9) to equation (6), we 

have the homogeneous system of four linear equations with respect to the unknown 

i
C , 4,...,1=i . This system of equations can be written in the matrix form 

 ( ) 0=⋅CA λ  (10) 
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where [ ]TCCCC
4321

,,,=C  and ( )
44

][
×

= kjaλA . For existence of non-trivial solu-

tion to the buckling load problem it is necessary that the determinant of the matrix 

A  be equal to zero 

 ( ) 0det =λA  (11) 

Equation (11) is then solved numerically using an approximate method. 

The following matrices are obtained for various boundary conditions: 

– clamped-clamped beams 
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– pinned-pinned beams 
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– clamped-pinned beams 
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where 
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3. Numerical computations 

In this section we present some numerical results. For uniform homogeneous 

beams comparisons of the exact solution [2], calculated by Huang and Luo [4] and 

the results obtained here are presented in Table 1. The calculated results correspond 

to the previous research. 
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Table 1 

Dimensionless critical buckling loads for a uniform homogeneous beam 

with various boundary conditions 

B C C-C C-P P-P 

Exact [2] 39.4784 20.1907 9.8696 

[4] 39.478418 20.190729 9.869604 

Present results 39.478417 20.190666 9.869604 

Table 2 

Dimensionless critical buckling loads for functionally graded beams 

with various boundary conditions 

B C 

β 
C-C C-P P-P 

2 37.254959 7.10874 4.489585 

1.5 37.849138 9.981006 6.190828 

1 38.610809 13.324839 7.944048 

0.5 39.237105 16.856634 9.331192 

0.1 39.468432 19.558037 9.847218 

–0.1 39.468432 20.801314 9.847218 

–0.5 39.237105 22.991997 9.331192 

–1 38.610809 25.135859 7.944048 

–1.5 37.849138 26.750393 6.190828 

–2 37.254959 28.119721 4.489585 

 
Dimensionless critical buckling loads for three cases under consideration: 

clamped beams, simply-supported beams and clamped-pinned beams, were calcu-

lated for several various values of β. The obtained results are tabulated in Table 2. 

It can be observed that for clamped-pinned beams an increase of the value of β 

causes a decrease of the critical buckling load. Moreover, it is easily noticed that 

values of critical loads for clamped-clamped beams are symmetric, i.e. for opposite 

values of β we have the same results. This property also occurs for pinned-pinned 

beams. This is due to the fact that the boundary conditions at both ends are the 

same. 

Conclusions 

In this contribution we have shown an approach to determine the critical load of 

buckling of axially functionally graded beams subjected to a distributed axial load. 

Examples of computing buckling loads for three types of boundary conditions have 

been presented. Numerical examples show that the critical buckling loads of 
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a homogeneous beam calculated by the proposed approach are in good agreement 

with those available in literature. 
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