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Integrated system of health management-orIented relIabIlIty 
predIctIon for a spacecraft software system wIth an 
adaptIve genetIc algorIthm support vector machIne

ZorIentowane na ZIntegrowane ZarZądZanIe kondycją systemu 
prognoZowanIe nIeZawodnoścI systemów oprogramowanIa 

statków kosmIcZnych Z wykorZystanIem opartej na adaptacyjnym 
algorytmIe genetycZnym masZyny wektorów nośnych

Software reliability prediction is very important to minimize cost and improve software development effectiveness, especially in 
a spacecraft’s software system. In this paper, a new spacecraft software system reliability definition is given and a new reliability 
prognostics-oriented life cycle integrated system health management for a spacecraft software system is focused on. Adaptive ge-
netic algorithms are then combined with a support vector machine to build an adaptive genetic algorithm support vector machine 
reliability prediction model. This model attempts to overcome the genetic algorithm weaknesses, such as the local minima and 
premature convergence problems, and solves the parameter selection difficulties often encountered in a support vector machine. 
After construction, the proposed adaptive genetic algorithm support vector machine model is employed to predict the reliability of 
a spacecraft software system. Finally, a numerical example is given to show how the proposed approach has a superior prediction 
performance compared to a standard support vector machine and artificial neural network.

Keywords: spacecraft software system, reliability, integrated system health management, adaptive genetic algo-
rithms support vector machine.

Przewidywanie niezawodności oprogramowania odgrywa ważną rolę w minimalizowaniu kosztów i poprawie efektywności two-
rzenia oprogramowania, zwłaszcza w odniesieniu do systemów oprogramowania statków kosmicznych. W niniejszej pracy, podano 
nową definicję niezawodności systemu oprogramowania statku kosmicznego koncentrując uwagę na opartym na prognozowaniu 
niezawodności oraz cyklu życia modelu zintegrowanego zarządzania kondycją systemu opracowanego dla systemu oprogramo-
wania statku kosmicznego. Skonstruowano następnie model przewidywania niezawodności oparty na połączeniu adaptacyjnych 
algorytmów genetycznych oraz maszyny wektorów nośnych. Model ten stanowi próbę przezwyciężenia słabości algorytmów gene-
tycznych, takich jak problem minimów lokalnych czy problem przedwczesnej zbieżności, a także rozwiązania trudności związanych 
z doborem parametrów, jakie często występują przy zastosowaniu maszyny wektorów nośnych. Skonstruowany model opartej 
na adaptacyjnym algorytmie genetycznym maszyny wektorów nośnych zastosowano do przewidywania niezawodności systemu 
oprogramowania statku kosmicznego. Wreszcie, przedstawiono przykład liczbowy, który pokazuje że opracowany model charak-
teryzuje się wyższą dokładnością prognozowania w porównaniu do standardowej maszyny wektorów nośnych oraz sztucznej sieci 
neuronowej.

Słowa kluczowe: system oprogramowania statku kosmicznego, niezawodność, zintegrowane zarządzanie kondy-
cją systemu, adaptacyjne algorytmy genetyczne, maszyna wektorów nośnych.

Xu J, Meng Z, Xu L. Integrated system of health management-oriented reliability prediction for a spacecraft software system with an 
adaptive genetic algorithm support vector machine. eksploatacja i niezawodnosc – Maintenance and Reliability 2014; 16 (4): 571–578.

1. Introduction

As interest in the development of the space industry increases, the 
need for more reliable spacecraft is becoming crucial [15, 19, 23]. Fu-
ture manned and unmanned space missions to the International Space 
Station, the Moon, Mars, and beyond means longer mission durations 
and a reliance on a more complex assemblage of components, both of 
which increase the probability of operational mission failures [30]. To 
ensure that the spacecraft operates as planned, every element of the 
vehicle as well as the completely assembled spacecraft itself must be 
tested on the ground under conditions simulating those it will face in 
space [31, 27, 25]. Consequently, a life cycle integrated system health 

management system which focuses on early spacecraft design, opera-
tions and general maintenance is required [28]. 

A spacecraft’s software system is directly related to the possibility 
of mission failure because of the critical functions and complex oper-
ating environment. Spacecraft software system reliability (SSSR) is a 
critical index needed to ensure system reliability [18]. Although the 
importance of spacecraft software system reliability has long been re-
alized, aerospace disasters caused by faults in the spacecraft software 
system (SSS) still occur. In 1996, a software failure in the Ariane 501 
developed by the European Space Agency (ESA) resulted in a rocket 
explosion 40 seconds after launch, causing billions of dollars of eco-
nomic losses. In 1999, software failures caused the landing engine on 
NASA’s Mars Polar Lander to prematurely shut down resulting in a 
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crash. Therefore, in spacecraft systems, any small software error may 
lead to entire mission failure, resulting in not only economic losses 
but also possible loss to human life and property. To deal with the 
safety and maintenance of a manned spacecraft, and especially that 
of the spacecraft software system reliability, a life cycle integrated 
system health management (ISHM) system which focuses on early 
design, operations and general maintenance is vital [9]. 

Generally, the ISHM consists of in situ monitoring, condition as-
sessment, fault diagnosis, prognosis, and appropriate decision mak-
ing, so it is a more comprehensive system than traditional prognos-
tics and health management (PHM) systems. Health management has 
emerged as one of the key enablers for efficient system-level main-
tenance and lower life cycle costs. Diagnostics assesses the system’s 
current reliability, and prognostics identify potential future failures. 
Using the prognostics information, health management systems main-
tain a system or equipment in working condition [32, 1]. Integrated 
system health management is a framework of integrated technologies 
that evaluates system reliability in actual life cycle conditions to de-
termine the advent of failure and to mitigate system risks. ISHM does 
this by monitoring the health of a product or system, and then estimat-
ing reliability through an evaluation of the deviation or degradation 
from an expected health state and usage conditions [26]. The space-
craft software system life cycle includes early design, operation and 
maintenance over two stages. 

As software size and complexity have increased, software devel-
opment has moved toward modular designs [12]. This is especially 
true of the new generation spacecraft software systems monitored by 
life cycle integrated system health management. The life cycle in-
tegrated system health management discussed in this paper focuses 
on reliability prediction in the early design stage of the spacecraft 
software system. Basically, the spacecraft software system reliability 
mechanism is able to quantify the operational profile of the spacecraft 
software system. However, as software tends to develop defects and 
faults over time, software reliability also changes with time. Thus, as 
the number of faults grows, predicting software reliability over time 
becomes increasingly difficult. Consequently, as prognostics are the 
core of integrated system health management, the design of a life cy-
cle integrated system health management with efficient prognostics 
technology is a very important research field [29]. 

There has been significant research into software reliability. Piet-
rantuono, Russo and Trivedi [22] proposed an architecture-based ap-
proach for software reliability and testing time allocation. Huang and 
Lin [13] presented an analysis of software reliability modelling by 
testing compression factors and failure-to-fault relationships. Amin, 
Grunske and Colman [18] outlined an approach to software reliability 
prediction based on time series modelling. Garg, Lai and Huang [10] 
studied a problem from the perspective of software reliability models 
which focused on when to stop testing. Some research has also spe-
cifically focused on spacecraft software system reliability. Wang [27] 
studied SSS design and performance tests from evaluation to release. 
However, few studies have focused on spacecraft software system re-
liability by investigating the life cycle integrated system health man-
agement.

As the spacecraft software system is very complex, there is a large 
quantity of random volatile fault data. Because of this, there is no 
single approach capable of resolving all software reliability life cy-
cle integrated system health management problems as all approaches 
have both advantages and disadvantages. However, spacecraft soft-
ware system reliability prediction, accuracy and timeliness are vital 
for decision-makers. Therefore, in this paper, adaptive genetic algo-
rithms (AGA) [7, 18] combined with support vector machines (SVM) 
[33, 6, 14] are used to build an adaptive genetic algorithm-support 
vector machine prediction model. The adaptive genetic algorithm-

support vector machine attempts to overcome the traditional weak-
nesses of genetic algorithms, such as the local minima and premature 
convergence problems, and solves support vector machine problems, 
such as parameter selection difficulty. This fusion approach is then 
used in a spacecraft software system reliability prediction case study. 
The remainder of this paper is organized as follows; Section 2 outlines 
the spacecraft software system reliability prediction problem and the 
fusion prediction approach. The proposed adaptive genetic algorithm-
support vector machine is built and elaborated on in Section 3. In 
Section 4, a numerical example is given to show an application of 
the proposed model and algorithm. Concluding remarks are given in 
Section 5.

2. Spacecraft software system reliability prognostics

Software reliability is typically very complex [27] because of the 
number of features and the need to ensure a high level of safety and 
reliability, as shown in Fig. 1. Spacecraft software system reliabil-
ity requires that interstellar functions and ground station functions 
work synchronously. Interstellar functions are made up of navigation 
calculations, housekeeping, fault monitoring, command processing, 
spacecraft subsystem management, general management and the 
communications payload. Ground station functions are made up of 
data processing, data compression and storage, spacecraft telemetry 
remote control, user interfaces, and operating condition monitoring 
and maintenance. Both interstellar and ground systems require high 
reliability, and this is particularly important for the interstellar soft-
ware, which is typically an embedded real-time system. This com-
plexity also leads to significantly higher software development costs. 
Therefore, to ensure the normal operation of a spacecraft and to avoid 
mission failure, it is necessary to focus on spacecraft software system 
reliability in the early design stage. This means that to develop highly 
reliable spacecraft software system reliability, verification techniques 
are necessary, so, besides the traditional techniques such as testing, 

Fig. 1. Integrated Spacecraft Software Systems
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automated verification techniques such as life cycle integrated system 
health management-oriented spacecraft software system reliability 
prediction are also critical [17].

Assessing the software reliability of life cycle integrated system 
health management is a complex task, because of the multiple time 
stages, the complexity of the system structures, the large number of 
parameters, the competing failure mechanisms and the presence of 
intermittent faults and failures [2, 29, 30]. The software reliability life 
cycle integrated system health management processes are shown in 
Fig. 2. Continuous health monitoring processes provide information 
about the system's performance, the environment and the operational 
loading, the data from which is required for life cycle integrated sys-
tem health management data manipulation. The system's perform-
ance is then compared with a historical database, the faulty parameter 
isolated and the product damage assessed. Following this, parameter 
selection and isolation are carried out to identify the parameters that 
are contributing to the abnormal status of the system. The reliability 
is then assessed using diagnostic approaches, and, through the use of 
prognostic algorithms, the level of deviation or degradation is identi-
fied and the advent of failure is predicted by determining the distribu-
tion of remaining life. 

Spacecraft software system reliability 
is defined as the probability of a failure-
free software operation for the operational 
phase in a specified environment [31], and 
has quality characteristics, as it is able to 
quantify the operational profile of a space-
craft software system. Spacecraft software 
system reliability generally changes over 
time leading to the appearance of defects 
and faults, which means that the failure 
space time (FST) is the key to an accurate 
assessment of spacecraft software system 
reliability. As a result, before the space-
craft software system is put into operation 
the proposed life cycle integrated system 
health management for spacecraft software system reliability predic-
tion is able to identify faults and remove them in the early design 
stage. Spacecraft software system reliability in the early design stage 
is focused on in this paper, as shown in Fig. 3.

For complex spacecraft software systems, the application of in-
telligent technology assists in parameter optimization and accuracy 
improvements. Support vector machines have a good generalization 
ability as they utilise a statistical learning theory based on dimension 
theory and structural risk minimization rules [32], rather than tradi-
tional empirical risk minimization principles. The support vector ma-
chines’ basic idea is the mapping of the data to a larger dimensional 

feature space where a linear regression is conducted using nonlinear 
mapping. This has been shown to have a positive effect in small sam-
ple, high dimension, non-linear prediction areas. However, parameter 
selection can have a significant influence on the prediction effect. Be-
cause adaptive genetic algorithms have a strong global optimization 
ability, a type of automatic parameter selection method using adaptive 
genetic algorithms is established in this paper. Here, we propose an 
intelligent fusion prediction model based on support vector machine 
prediction and adaptive genetic algorithmic theory. Fusion prediction, 
a synthesis of these two different theories, has the ability to strengthen 
the positive aspects of both.

3. AGA-SVM prognostics model

The fusion method used in the paper is based on support vector 
machines and adaptive genetic algorithms. The adaptive genetic algo-
rithm support vector machine combines adaptive genetic algorithms 
with support vector machines as described in the following. The origi-
nal sequence is first transformed into a new sequence of data using an 
accumulation operation, and the prediction model is established using 
the support vector machines to generate the data sequence. Then, an 
adaptive genetic algorithm method is employed to select the best pa-
rameters for the adaptive genetic algorithm support vector machine 
prediction model. Finally, a prediction value can be determined using 
the inverse accumulation generation prediction result. The essence of 
the adaptive genetic algorithm support vector machine model is as 
shown in Fig. 4. The adaptive genetic algorithms use a global auto-
matic optimization ability which intelligently finds the best parame-
ters as well as the optimal parameters for the support vector machine’s 
kernel function, all of which makes the calculations easier and saves 
prediction time. The complete process is as in the following: 

Step 1. Initial data pre-processing of spacecraft software system 
failure data 

The initial collected spacecraft software system failure data is 

expressed as the (0)R  series:

 (0) (0) (0) (0){ (1), (2), , ( )}R r r r n=   (1)

where (0) ( ) 0( 1,2, , )r i i n> =   denotes the ith failure values. 

Fig. 2. ISHM-oriented fusion prognostics framework for SSS

Fig.4. AGA-SVM operating flow diagram

Fig. 3. The proposed SSS reliability 
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From the regular accumulation of the initial data series, a data 
series is generated:
 (1) (1) (1) (1){ (1), (2), , ( )}R r r r n= 

 (2)

Where (1) (0)

1
( ) ( )

k

i
r k r i

=
= ∑ , 1,2, , , 1,2, ,i n k n= = 

. The new series 

is taken as a learning sample for the support vector machines.
The failure data is random and disordered because of the complex-

ity of the spacecraft software system and the complicated relationship 
between each module or component. Consequently, the accumulated 
generation operation is employed on the original disordered data to 
find the hidden internal relationships. To do this, the adaptive genetic 
algorithm support vector machine prediction model is established us-
ing the generated data. 

Step 2. Selection of kernel function for the prognostics model 
Different kernel functions and parameters have a significant ef-

fect on the support vector machine prediction model’s performance. 
Selecting the appropriate kernel function can be done relatively easily 
from the predicted results, which can, to some extent, overcome the 
negative effects caused by the unbalanced samples. Common kernel 
functions have polynomial kernel functions, and radial basis function 
(RBF) kernel functions, and each different kernel function determines 
a different nonlinear transformation and feature space, which have 
different classification effects. 

The common kernel functions are as follows: 

(1) Inner product kernel function, ( , ) ( )i ik r r r r= ⋅ ; 

(2) Polynomial kernel function, ( , ) [( ) 1]q
i ik r r r r= ⋅ + ; 

(3) RBF kernel function, k r r r ri i( , ) exp{ | | / }= − − 2 22σ ;

(4) Sigmoid kernel function, ( , ) tanh( ( ) )i ik r r a r r b= ⋅ + .

After a comparative analysis of the different kernel functions, 
and by taking into account the complexity of the spacecraft software 
system and the large amount of data from the numerous sensors, the 
RBF kernel function is chosen here to support the support vector ma-
chine prognostics model, as it has a strong nonlinear prediction abil-
ity, which is able to achieve better prediction results. The parameter σ 
is chosen as in the following step. 

Step 3. Select parameters using adaptive genetic algorithms 
Support vector machine parameter selection, such as the kernel 

function parameter σ, the regularization parameter C  and the regres-
sion approximation error control parameter ε is very important, as it 
has a significant influence on support vector machine performance. 

There has been significant research focused on support vector ma-
chine parameter selection. An expression for calculating C  and ε  
was suggested by Cherkassky and Ma, who also provided an effective 
solution to the selection problem [6]. Cristianini et al. used a kernel 
calibration method to quickly determine the kernel parameters, but the 
selection of C  and σ were not involved [5]. Keerthi and Lin found 
that there was a functional relationship between the kernel parameters 
and C , and converted a two-dimensional optimization problem into 
two one-dimensional optimization problems [14]. 

Genetic algorithms (GA) have also been used to select optimal 
parameters [21]. One of the main problems related to genetic algo-
rithms is in finding the optimal control parameter values. Further, dif-
ferent control parameter values may be necessary during the course of 
a run. The main weaknesses of genetic algorithms are that they can be 
ineffective and time-consuming because of complexity, and therefore 
can be costly to the SSS. Consequently, an adaptive genetic algorithm 
is built so that the selected control parameters can be dynamically 

adjusted during the problem solution evolution [7]. Reference [20] 
described the main scheme of this concept using two fuzzy logic con-
trols (FLC): the crossover FLC and the mutation FLC. These two 
FLCs were implemented independently to adaptively regulate the 
crossover and mutation operator rates during the genetic search proc-
ess. The fitness evaluation function in this paper is defined as 

1

ˆ1 n

i

R R
n t=

−∑ , where R , R̂  represent the initial values and predic-

tion values [8]. 

Step 4. Adopt support vector machine regression model 

(1) (1) (1) (1){ (1), (2), , ( )}R r r r n=   is the given generated data se-

ries, where rt can be used to predict rt+1 by mapping : mf D D→ , 

1 1 ( 1)( , , , )t t t t mr f r r r+ − − −=  , and m  is the embedded dimension, 

namely the model order. Consequently, the learning samples for pre-
diction can be obtained after the transformation. Then, the final pre-
diction error (FPE) is employed to assess the model error and to select 
the value for m . 
where:

 FPE( )m d m
d m a=
+
−

σ 2  (3)

σ α α2

11

21
= =

−
− − +

=

−

= +
∑∑E

d m
Kd t i i

i

d m
i t

t m

r
(a ) [d ( ( ) (r , r ) b)]* , d  is the 

number of training samples, α  and α*  are the Lagrange multipliers, 
and K  is the inner product function. 

After the topological structure of the support vector machine pre-
diction is determined, the learning samples that the support vector ma-

chines use are trained, and the values for α , α*  and b are derived. 
From this, the regression function [33] is available: 

 f r K r r bi i i
SV

( ) ( ) ( , )*= − +∑ α α  (4)

where 1, ,t m d= +  . 

Accordingly, the values for α , α*  and b are put into Eq. (4) and 
a definitive regression function is determined. 

Step 5. Compute prediction values 

The data series (1)R  is put into the prediction steps above and 
(1)R̂  is determined. An L-step prediction model is then computed: 

 

*
1

1
ˆ ( ) ( , )

d m
d i i i d m l

i
r K r r bα α

−

+ − +
=

= − +∑ α α
 (5)

where 1 1ˆ ˆ{ , , , , }d m l d m l d d lr r r r− + − + + + −=   . 

The data series (1)R̂  in Eq. (5) are the prediction values for the 
accumulated generation data series (1)R .
The inverse accumulated generation operation (IAGO) to (1)R̂  is 
initiated, and the prediction model for the original data series (0)R  is 
obtained as follows:

 
(0) (1) (1)ˆ ˆ̂( 1) ( 1) ( ), 1, 2,+ = + − = + + R k r k r k k n n  (6)
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where (0)R̂  are the prediction values for (0)R . 

4. Numerical example

In this section, a numerical example is given to illustrate the pre-
dictive performance of the proposed adaptive genetic algorithm sup-
port vector machine model. As described in Section 2, as the SSSR 
generally changes over time, the FST is an exemplification of an 
SSSR for an SSS and is closely connected with defects and faults. 
Consequently, the FST for the SSS are taken as the prognostic sam-
ples as shown in Table 1. The data contains 100 observations of a 
times series (t, FSTt) pertaining to an SSS prototype. Here, FSTt rep-
resents the failure space time of the software after the tth modification 
has been made. Then, the FSTt data are divided into two with seventy 
items in the training set, and thirty items in the validation set as shown 
in Figures 5 and 6. Through calculation, 30 FSTt values were derived 
as shown in Table 2. 

Table 1. 100 historical FSTt data (seconds)

no. Value no. Value. no. Value no. Value no. Value no. Value

1 8.63 18 9.38 35 9.49 52 12.61 69 12.28 86 11.38

2 9.15 19 8.61 36 8.13 53 7.16 70 11.96 87 12.21

3 7.96 20 8.78 37 8.68 54 10.01 71 12.02 88 12.28

4 8.64 21 8.04 38 6.46 55 9.86 72 9.30 89 11.37

5 9.98 22 10.91 39 8.01 56 7.87 73 12.50 90 11.41

6 10.19 23 7.56 40 4.71 57 8.64 74 14.56 91 14.42 

7 11.76 24 11.04 41 10.01 58 10.58 75 13.33 92 8.34

8 11.67 25 10.12 42 11.02 59 10.93 76 8.95 93 8.08

9 6.94 26 10.18 43 10.87 60 10.67 77 14.78 94 12.21

10 7.49 27 5.92 44 9.48 61 12.51 78 14.89 95 12.79 

11 10.63 28 9.50 45 11.03 62 11.37 79 12.14 96 13.16 

12 7.86 29 9.62 46 10.86 63 11.92 80 9.79 97 12.76 

13 8.69 30 10.43 47 9.48 64 9.58 81 12.11 98 10.36 

14 9.29 31 10.64 48 6.67 65 10.46 82 13.12 99 13.85 

15 8.35 32 8.34 49 9.31 66 12.73 83 12.30 100 12.49 

16 9.11 33 10.39 50 10.36 67 12.61 84 12.72

17 9.61 34 11.32 51 10.11 68 12.10 85 14.21

Table 2. Samples in validation set (seconds)

no. 1 2 3 4 5 6 7 8 9 10

Value 12.02 9.30 12.50 14.56 13.33 8.95 14.78 14.89 12.14 9.79 

no. 11 12 13 14 15 16 17 18 19 20

Value 12.11 13.12 12.30 12.72 14.21 11.38 12.21 12.28 11.37 11.41 

no. 21 22 23 24 25 26 27 28 29 30

Value 14.42 8.34 8.08 12.21 12.79 13.16 12.76 10.36 13.85 12.49

Fig. 5. Historical FST data Trends 

Fig. 6: Validation set Samples Trend 
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4.1. Results of fusion prognostics

In the adaptive genetic algorithm support vector ma-
chine, the 100 historical values were divided into two 
parts: seventy in the training set, and thirty in the valida-
tion set. The adaptive genetic algorithms were employed 
to solve the problems, and the parameters used were set 
according to reference [20] as follows: population size 

50N =  , crossover probability 0.6cp = , mutation prob-

ability 0.2mp =  , maximum number of generations 
max 1000Gen = . In addition, the fitness evaluation 

function was defined as 
1

ˆ1 n

i

R R
n t=

−∑ , as outlined in 

Step 3 of Section 3. After a run of the adaptive genetic 
algorithms, the fitness function had a significantly bet-
ter convergence as shown in Fig.7, with the best fitness 
value for each generation represented in the vertical 
axis, and the iterations in the horizontal axis. Conse-
quently, the optimal parameters σ = 0 66. , ε = 0 0001. , 

1000.26C =  were chosen. The FPE method was used 
for prediction after the optimal length of the historical 

original data had been selected. The adaptive genetic algorithm sup-
port vector machine updated the historical original data using an adap-
tive add or subtract strategy, and accordingly, dynamic prediction was 
executed. 

Considering the dynamic prediction latency, this model adopts a 
multi-step prediction strategy, with 5 prediction steps. The schemes 
cited above not only assure a highly precise prediction, but also re-
duce the amount of calculations needed. 

The predicted values using the adaptive genetic algorithm support 
vector machine, genetic algorithm support vector machine, and an ar-
tificial neural network (ANN) [11] are shown in Table 3. The thirty 
samples in the validation set were used for comparison and evalua-
tion. 

4.2. Performance analysis

A comparative study of the predictive performance of the other 
models was conducted. The results from the adaptive genetic algo-
rithm support vector machine model were compared with the results 
from an artificial neural network model and a genetic algorithm sup-
port vector machine model as shown in Fig. 8. The vertical axis 
represents the value of the failure space time, and the horizontal 
axis represents the sequence number. It can be seen that the artificial 
neural network model results had a serious distortion in the predic-
tion for temporal data aggregation, as it is only able to predict expo-
nential data series. However, the adaptive genetic algorithm support 
vector machine avoided this problem, as it enhances the regularity 
of data through the accumulated generating operation which weak-
ens the random disturbance on the original data and finds the hidden 
internal relations from the disordered original data. In addition, the 
advantages of the support vector machines are also incarnated in the 
genetic algorithm support vector machine, such as the small sample 
learning. Consequently, the adaptive genetic algorithm support vec-
tor machine was shown to have a better predictive performance than 
either the genetic algorithm support vector machine or the  artificial 
neural network. 

Based on the prognostics results, the prediction model was ana-
lyzed and evaluated using the following measures; the mean absolute 
percentage error (MAPE), the normalized root mean squared errors 
(NRMSE) and the root mean squared relative error (RMSRE). MAPE 
can be used to analyze and evaluate the approximation ability of the 
prediction model, and NRMSE and RMSRE are used to assess the 

Table 3. Predicted values using different approaches

t Orignal AgA-SVM Ann gA-SVM

1 12.02 12.81 13.68 13.96 

2 9.30 10.80 8.23 7.64

3 12.50 12.78 10.45 14.28

4 14.56 13.99 15.72 15.73

5 13.33 13.67 14.26 10.67

6 8.95 9.65 8.46 8.12

7 14.78 14.01 12.46 12.46

8 14.89 15.71 15.81 15.36

9 12.14 12.55 11.64 9.43

10 9.79 9.7 9.01 8.19

11 12.11 11.11 13.24 14.56

12 13.12 13.68 14.68 10.38

13 12.30 12.23 10.37 11.78

14 12.72 12.45 13.01 10.39

15 14.21 14.38 13.83 12.41

16 11.38 11.64 10.65 8.06

17 12.21 12.89 13.99 14.67

18 12.28 13.01 12.67 11.29

19 11.37 10.34 10.94 13.79

20 11.41 11.63 11.38 12.08

21 14.42 12.45 15.06 10.49

22 8.34 9.34 8.96 11.94

23 8.08 8.09 7.68 9.05

24 12.21 11.79 13.54 11.52

25 12.79 13.11 12.03 8.42

26 13.16 12.42 12.88 15.28

27 12.76 10.43 11.06 12.48

28 10.36 8.34 9.25 7.49

29 13.85 13.65 14.78 14.27

30 12.49 12.78 13.6 13.53

Fig. 7. The comparison of the current optimal solution and the historical optimal solution
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ability of the models to simulate realistic, observed variability. The 
evaluation results for the prediction models are shown in Table 4, 
from where it can be seen that: ANN(MAPE)>GA-SVM(MAPE)>AGA-
SVM(MAPE), ANN(NRMSE)<GA-SVM(NRMSE)<AGA-SVM(RMSRE), 
ANN(RMSRE)>GA-SVM(RMSRE)>AGA-SVM(RMSRE), which demon-
strates that the AGA-SVM had the best performance for the MAPE, 
NRMSE and RMSRE. These results not only show the close rela-

tionship between the actual and predicted values, but 
also indicate that the AGA-SVM model is valid for 
predicting the SSSR. 

5. Conclusion

An integrated system health management for a 
spacecraft software system was proposed to assist in 
avoiding catastrophic software failure by providing 
ongoing reliability monitoring as well as by predicting 
failure and providing warnings. Spacecraft software 
system reliability prediction is a critical process in in-
tegrated system health management. Many methods 
have been used to predict spacecraft software system 
reliability, but a single prediction method is unable to 
meet the requirements of modern complex space avion-
ics systems. In this paper, a prognostics model for the 
prediction of spacecraft software system reliability was 
demonstrated. The adaptive genetic algorithm support 
vector machine combines adaptive genetic algorithms 
with standard support vector machines. A numerical ex-
ample demonstrated that the use of the adaptive genetic 
algorithm support vector machine model in selecting 
the support vector machine parameters increases the 
predictive performance of the genetic algorithm sup-

port vector machine, as it makes the prediction process faster, which 
is very important for integrated system health management. A com-
parative study of the predictive performance of other models was con-
ducted, and from this it could be seen that the proposed model has a 
better performance than either an artificial neural network or standard 
support vector machines. Therefore, the model was proved to be an 
efficient reliable modeling technique for spacecraft software system 
engineering. 

In this paper, the focus was on finding methods to effectively use 
reliable system-specific information and improve prognostics per-
formance. In the future, we plan to study investigative techniques that 
can fuse spacecraft software system reliability estimates, save time 
and provide accurate, more efficient optimization algorithms to select 
the parameters for the support vector machine model to predict space-
craft software system reliability.

Fig. 8. Comparison of predicted results for different methods

Table 4. Efficacy evaluation of prognostics models

Prognostics
models

evaluation index 

MAPe nRMSe RMSRe 

Ann 43.104 0.264 0.618

gA-SVM 22.146 0.582 0.326

AgA-SVM 10.601 0.791 0.041
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