PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

External Mass Transfer Model for Hydrogen Peroxide Decomposition by Terminox Ultra Catalase in a Packed-Bed Reactor

Autorzy
Treść / Zawartość
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is known that external diffusional resistances are significant in immobilized enzyme packed-bed reactors, especially at large scales. Thus, the external mass transfer effects were analyzed for hydrogen peroxide decomposition by immobilized Terminox Ultra catalase in a packed-bed bioreactor. For this purpose the apparent reaction rate constants, kP, were determined by conducting experimental works at different superficial velocities, U, and temperatures. To develop an external mass transfer model the correlation between the Colburn factor, JD, and the Reynolds number, Re, of the type JD = K Re(n-1) was assessed and related to the mass transfer coefficient, kmL. The values of K and n were calculated from the dependence (am kp-1 - kR-1) vs. Re-1 making use of the intrinsic reaction rate constants, kR, determined before. Based on statistical analysis it was found that the mass transfer correlation JD = 0.972 Re-0.368 predicts experimental data accurately. The proposed model would be useful for the design and optimization of industrial-scale reactors
Rocznik
Strony
307--319
Opis fizyczny
Bibliogr. 26 poz., tab., wykr.
Twórcy
autor
  • UTP University of Science and Technology, Faculty of Chemical Technology and Engineering, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland
Bibliografia
  • 1. Alptekin Ö., Seyhan Tükel S., Yildirim D., Alagöz D., 2011. Covalent immobilization of catalase onto spacer-arm attached modified florisil: Characterization and application to batch and plug-flow type reactor systems. Enzyme Microb. Technol., 49, 547-554. DOI: 10.1016/j.enzmictec.2011.09.002.
  • 2. Altomare R. E., Kohler J., Greenfield P. F., Kittrell J. R., 1974. Deactivation of immobilized beef liver catalase by hydrogen peroxide. Biotechnol. Bioeng., 16, 1659-1673. DOI: 10.1002/bit.260161208.
  • 3. Betancor L., Hidalgo A., Fernández-Lorente G., Mateo C., Fernández-Lafuente R., Guisan J. M., 2003. Preparation of a stable biocatalyst of bovine liver catalase using immobilization and postimmobilization techniques. Biotechnol. Progres, 19, 763-767. DOI: 10.1021/bp025785m.
  • 4. Burghardt A., Bartelmus G. (Eds.), 2001. Models of Heterogeneous Fixed-Bed Catalitic Reactors, In: Chemical Reactors Engineering. Part II. Heterogeneous Reactors. Scientific Publishing Company, Warsaw, 170-277.
  • 5. Costa S. A., Tzanov T., Carneiro F., Gubitz G. M., Cavaco-Paulo A., 2002a. Recycling of textile bleaching effluents for dyeing using immobilized catalase. Biotechnol. Lett., 24, 173-176. DOI: 10.1023/a:1014136703369.
  • 6. Costa S. A., Tzanov T., Filipa Carneiro A., Paar A., Gübitz G. M., Cavaco-Paulo A., 2002b. Studies of stabilization of native catalase using additives. Enzyme Microb. Technol., 30, 387-391. DOI: 10.1016/S0141- 0229(01)00505-1.
  • 7. Curcio S., Ricca E., Saraceno A., Iorio G., Calabrò V., 2015. A mass transport/kinetic model for the description of inulin hydrolysis by immobilized inulinase. J. Chem. Technol. Biotechnol., 90, 1782-1792. DOI: 10.1002/jctb.4485.
  • 8. Deluca D. C., Dennis R., Smith W. G., 1995. Inactivation of an animal and a fungal catalase by hydrogen peroxide. Arch. Biochem. Biophys., 320, 129-134. DOI: 10.1006/abbi.1995.1350.
  • 9. Dizge N., Tansel B., 2010. External mass transfer analysis for simultaneous removal of carbohydrate and protein by immobilized activated sludge culture in a packed bed batch bioreactor. J. Hazard. Mater., 184, 671-677. DOI: 10.1016/j.jhazmat.2010.08.090.
  • 10. Eberhardt A. M., Pedroni V., Volpe M., Ferreira M. L., 2004. Immobilization of catalase from Aspergillus niger on inorganic and biopolymeric supports for H2O2 decomposition. Appl. Catal. B: Environ., 47, 153-163. DOI: 10.1016/j.apcatb.2003.08.007.
  • 11. Farkye N. Y., 2004. Cheese technology. Int. J. Dairy Technol., 57, 91-98. DOI: 10.1111/j.1471- 0307.2004.00146.x.
  • 12. Fernández-Lafuente R., Rodriguez V., Guisán J. M., 1998. The coimmobilization of d-amino acid oxidase and catalase enables the quantitative transformation of d-amino acids (d-phenylalanine) into α-keto acids (phenylpyruvic acid). Enzyme Microb. Technol., 23, 28-33. DOI: 10.1016/S0141-0229(98)00028-3.
  • 13. Greenfield P. F., Kinzler D. D., Laurence R. L., 1975. Film diffusion and Michaelis-Menten kinetics in a packedbed reactor. Biotechnol. Bioeng., 17, 1555-1559. DOI: 10.1002/bit.260171014.
  • 14. Illanes A., Wilson L., Vera C. (Eds.), 2014. Enzyme kinetics in a heterogeneous system, In: Problem solving in enzyme biocatalysis. John Wiley and Sons Ltd., Chichester, United Kingdom, 87-140.
  • 15. Kalaga D. V., Dhar A., Dalvi S. V., Joshi J. B., 2014. Particle-liquid mass transfer in solid–liquid fluidized beds. Chem. Eng. J., 245, 323-341. DOI: 10.1002/bit.260171014.
  • 16. Mudliar S., Banerjee S., Vaidya A., Devotta S., 2008. Steady state model for evaluation of external and internal mass transfer effects in an immobilized biofilm. Bioresource Technol., 99, 3468-3474. DOI: 10.1016/j.biortech.2007.08.001.
  • 17. Rovito B. J., Kittrell J. R., 1973. Film and pore diffusion studies with immobilized glucose oxidase. Biotechnol. Bioeng., 15, 143-161. DOI: 10.1002/bit.260150111.
  • 18. Schoevaart R., Kieboom T., 2001. Combined catalytic reactions—Nature’s way. Chemical Innovation, 31(12), 33-39.
  • 19. Tarhan L., Telefoncu A., 1990. Characterization of immobilized glucose oxidase—catalase and their deactivation in a fluid-bed reactor. Appl. Biochem. Biotechnol., 26, 45-57. DOI: 10.1007/BF02798392.
  • 20. Tarhan L., Uslan A. H., 1990. Characterization and operational stability of immobilized catalase. Process Biochem., 25(1), 14-18.
  • 21. Tarhan L., 1995. Use of immobilised catalase to remove H2O2 used in the sterilisation of milk. Process Biochem., 30, 623-628. DOI: 10.1016/0032-9592(94)00066-2.
  • 22. Traher A. D., Kittrell J. R., 1974. Film diffusion studies of immobilized catalase in tubular flow reactors. Biotechnol. Bioeng., 16, 419-422. DOI: 10.1002/bit.260160311. USP Technologies Company, http://www.h2o2.com/, April 24, 2017.
  • 23. Vasudevan P. T., Weiland R. H., 1990. Deactivation of catalase by hydrogen peroxide. Biotechnol. Bioeng., 36, 783-789. DOI: 10.1002/bit.260360805.
  • 24. Vasudeven P. T., Weiland R. H., 1993. Immobilized catalase: Deactivation and reactor stability. Biotechnol. Bioeng., 41, 231-236. DOI: 10.1002/bit.260410209.
  • 25. Vera-Avila L. E., Morales-Zamudio E., Garcia-Camacho M. P., 2004. Activity and reusability of sol-gel encapsulated α-amylase and catalase. Performance in flow-through systems. J. Sol-Gel Sci. Technol., 30, 197- 204. DOI: 10.1023/B:JSST.0000039505.49588.5d.
  • 26. Zámocký M., Koller F., 1999. Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Prog. Biophys. Mol. Biol., 72, 19-66. DOI: 10.1016/S0079-6107(98)00058-3.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cda4784-e1f8-4bf6-af04-da9a9e554a69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.