PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of boron on micro structure and microhardness properties of Mo-Si-B based coatings produced viatig process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, Mo-Si-B based coatings were produced using tungsten inert gas (TIG) process on the medium carbon steel because the physical, chemical, and mechanical properties of these alloys are particularly favourable for high-temperature structural applications. It is aimed to investigate of microstructure and microhardness properties of Mo-Si-B based coatings. Optical microscopy (OM), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the microstructures of Mo-Si-B based coatings. The XRD results showed that microstructure of Mo-Si-B coating consists of α-Mo, α-Fe, Mo2B, Mo3Si and Mo5SiB2 phases. It was reported that the grains in the niicrostructure were finer with increasing amounts of boron which caused to occur phase precipitations in the grain boundary. Besides, the average microhardness of coatings changed between 735 HV0.3 and 1140 HV0.3 depending on boron content.
Słowa kluczowe
Twórcy
autor
  • Kastamoku University, Faculty of Engineering and Architecture, Department of Materials Science and Nanotechnology Engineering, Kastamonu, Turkey
autor
  • Kastamoku University, Faculty of Engineering and Architecture, Department of Materials Science and Nanotechnology Engineering, Kastamonu, Turkey
autor
  • Kastamonu University, Cide Rifat Ilgaz Vocational High School, Kastamonu, Turkey
autor
  • Kastamonu University, Cide Rifat Ilgaz Vocational High School, Kastamonu, Turkey
Bibliografia
  • [1] W. O. Soboyejo, T. S. Srivatsan, Advanced Structural Materials: Properties, Design Optimization, and Applications. Taylor & Francis, (2006).
  • [2] E. A. Levashov, Yu. S., Pogozhev, A. Yu., Potanin, N. A. Kochetov, D. Yu. Kovalev, N. V. Shvyndina, T. A. Sviridova, Ceramics International, 40, 5, 6541 (2014).
  • [3] A. B. Gokhale, G. J. Abbaschian, J. Phase Equilibria, 12, 493 (1991).
  • [4] J. H. Schneibel, R. O. Ritchie, J. J. Kruzic, P. F. Tortorelli, Intermetallic Alloys, 36a, 531, (2005).
  • [5] K. S. Kumar, A. P Alur, Division of Engineering, Brown University, 182 Hope Street, Providence, RI 02912, USA Available online (2006).
  • [6] M. K. Meyer, M. Akinc, Journal of the American Ceramic Society, 79, 938. (1996).
  • [7] J. A. Leniberg, and R. O. Ritchie, Advanced Materials, 24, 26, 3445, (2012).
  • [8] M. Krüger, S. Franz, H. Saage, M. Heilmaier, J. H. Schneibel, P. Jéhanno, M. Boning, H. Kestler, Intermetallics, 16,7,933, (2008).
  • [9] S. Islak, O. Eski, S. Buytoz, Optoelectronics and Advanced Materials - Rapid Communications, 5, 65, (2011).
  • [10] S. Islak, S. Buytoz, and M. Karagôz, Indian Journal of Engineering & Materials Sciences, 19, 253, (2012).
  • [11] G. Azimi, and M. Shamanian, Journal of Alloys and Compounds, 505, 2, 598, (2010).
  • [12] S. O. Yilmaz, Surface and Coatings Technology, 201, 3, 1568, (2006).
  • [13] S. Buytoz, Surface and Coatings Technology, 200, 12, 3734, (2006).
  • [14] G. Tosun, Arabian Journal for Science and Engineering, 39, 3, 2097, (2014).
  • [15] M. Akinc, M. K. Meyer, M. J. Kramer, A. J. Thorn, J. J. Huebsch, B. Cook, Materials Science and Engineering, 261, 1-2, 16, (1999).
  • [16] M. Meyer, M. Kramer, M. Akinc, Advanced Materials, 8, 1, 85,(1996).
  • [17] M. K. Meyer, A. J. Thorn, M. Akinc, Intermetallics, 7, 2, 153, (1999).
  • [18] D. Berczik, Method for enhancing the oxidation resistance of a molybdenum alloy, and a method of making molybdenum alloy, U.S. Patent Number 5, 595-616 (1997).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cd9c4db-0192-44a3-a01e-994e09460415
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.