PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of satellite data in the quantitative assessment of evapotranspiration in northeastern Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We describe a method of calculating one of the basic phenomena influenced by groundwater recharge, namely evapotranspiration (ET). The Operational Simplified Surface Energy Balance (SSEBop) algorithm was applied to calculate actual evapotranspiration (ETa), being modified to include spatiotemporal changes of substrate humidity and so referred to as mSSSEBop. Calculations were performed within the Szkwa and Rozoga River catchments (NE Poland). Quantitative ETa assessment was based on the analysis of Landsat satellite images, hydrometeorological and hydrogeological data. The results obtained for the original SSEBop algorithm and the modified mSSEBop one were compared with the water balance and data from a MOD16A2 dataset. The calculated water balance gave ETa values close to results using mSSEBop (with differences of 9-54 mm/year). In the case of the original algorithm, differences were in range of 42-218 mm/year. When compared with MOD16A2 data, the differences were within the range of -16.7 to 23.2 mm/8 days, with the mSSEBop algorithm giving on average lower ETa sums (~14%) than MOD16A2 while SSEBop gave results higher than MOD16A2 by ~12%. The studies performed indicate that the method presented, using satellite data, gives a reliable, spatial and temporal ETa assessment for the mid latitudes.
Słowa kluczowe
Rocznik
Strony
766--780
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
  • University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Bibliografia
  • 1. Adane, Z.A., Nasta, P., Zlotnik, V., Wedin, D., 2018. Impact of grassland conversion to forest on groundwater recharge in the Nebraska Sand Hills. Journal of Hydrology: Regional Studies, 15: 171-183.
  • 2. Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration?: Guidelines for computing crop water requirements. Food and Agriculture Organization of the United Nations. Rome, Italy.
  • 3. Bentkowski, A., 2000. Objaśnienia do Mapy Hydrogeologicznej Polski, skala 1:50 000, arkusz Spychowo (217) (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 4. Biggs, T.W., Petropoulos, G.P., Velpuri, N.M., Marshall, M., Glenn, E.P., Nagler, P., Messina, A., 2015. Remote sensing of evapotranspiration from croplands. In: Remote Sensing Handbook, 3: Remote Sensing of WaIer Resources, DisasIers, and Urban Studies (ed. P.S. Thenkabail): 59-99. CRC Press. Boca Raton, USA.
  • 5. Bogacki, M., 1969. The dunes of the Kurpie Plain (in Polish with English summary). In: Dune Processes and Forms in Poland (ed. R. Galon): 327-354. Państwowe Wydawnictwo Naukowe PWN, Warszawa.
  • 6. Bouchet, R.J., 1963. Evapotranspiration reelle, evapotranspiration potentielle, et production agricole. Annales Agronomae, 14: 743-824.
  • 7. Budzyńska, M., Dąbrowska-Zielińska, K., Turlej, K., Małek, I., Bartold, M., 2011. Monitoring of the Biebrza wetlands using remote sensing methods (in Polish with English summary). Water-Environment-Rural Areas, 11: 39-64.
  • 8. Chen, M., Senay, G.B., Singh, R.K., Verdin, J.P., 2016. Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites. Journal of Hydrology, 536 : 384-399.
  • 9. Ćwiertniewska, Z., Herbich, P., 2002. Objaśnienia do Mapy Hydrogeologicznej Polski, skala 1:50 000, arkusz Świętajno (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 10. Dąbrowska-Zielińska, K., 1995. Assesment of evapotranspiration, soil moisture and green biomass of grassland using NOAA satellite images (in Polish with English summary). Continuo, Wrocław.
  • 11. Dębski, K., 1970. Hydrologia (in Polish). Arkady, Warszawa.
  • 12. Di, S.C., Li, Z.L., Tang, R., Wu, H., Tang, B.H., Lu, J., 2015. Integrating two layers of soil moisture parameters into the MOD16 algorithm to improve evapotranspiration estimations. International Journal of Remote Sensing, 36: 4953-4971.
  • 13. Dingman, S.L., 2015. Evapotranspiration. In: Physical Hydrology, 3rd ed. (ed. S.L. Dingman): 272-324. Prentice Hall, Long Grove, USA.
  • 14. Ershadi, A., Mccabe, M.F., Evans, J.P., Walker, J.P., 2013. Remote Sensing of Environment Effects of spatial aggregation on the multi-scale estimation of evapotranspiration. Remote Sensing of Environment, 131: 51-62.
  • 15. Fisher, J.B., Tu, K.P., Baldocchi, D.D., 2008. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sensing of Environment, 112: 901-919.
  • 16. Glejch, M., 2000. Objaśnienia do Mapy Hydrogeologicznej Polski, skala 1:50 000, arkusz Myszyniec (255) (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 17. Glenn, E.P., Neale, C.M.U., Hunsaker, D.J., Nagler, P.L., 2011. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrological Processes, 25: 4050-4062.
  • 18. Hoffmann, J., Sander, P., 2007. Remote sensing and GIS in hydrogeology. Hydrogeology Journal, 15: 1-3.
  • 19. Hulboj, A., 2002. Objaśnienia do Mapy Hydrogeologicznej Polski, skala 1:50 000, arkusz Ostrołęka (333) (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 20. Jaworski, J., 2004. Evaporation in the hydrological cycle of river basin (in Polish with English summary). Polskie Towarzystwo Geofizyczne, Warszawa.
  • 21. Jensen, M.E., Burman, R.D., Allen, R.G.,1990. Evapotranspiration and Irrigation Water Requirements. ASCE Manuals and Reports on Engineering Practice No. 70. American Society of Civil Engineers. New York, USA.
  • 22. Khalaf, A., Donoghue, D., 2012. Estimating recharge distribution using remote sensing: A case study from the West Bank. Journal of Hydrology, 414-415 : 354-363.
  • 23. Kozłowska, M., Kozłowski, I., 1996. Objaśnienia do Szczegółowej Mapy Geologicznej Polski, skala 1:50 000, arkusz Ruciane-Nida (218) (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 24. Li, R., Min, Q., Lin, B., 2009. Estimation of evapotranspiration in a mid-latitude forest using the Microwave Emissivity Difference Vegetation Index (EDVI). Remote Sensing of Environment, 113: 2011-2018.
  • 25. Liou, Y.A., Kar, S.K., 2014. Evapotranspiration estimation with remote sensing and various surface energy balance algorithms - a review. Energies, 7: 2821-2849.
  • 26. Lu, J., Sun, G., McNulty, S.G., Amatya, D.M. ,2005. A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. Journal of the American Water Resources Association, 41: 621-633.
  • 27. Matuszkiewicz, M.J., Solon, J., Kowalska, A., Wolski, J., Affek, A., Degórski, M., Grabińska, B., Kozłowska, A., Plit, J., Pawlicki, R.W., 2017. Long-term forest cover changes in terms of landscape sustainability: a case of Masuria-Kurpie borderland (in Polish with English summary). IGiPZ PAN, Warszawa.
  • 28. McCabe, M.F., Wood, E.F., 2006. Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors. Remote Sensing of Environment, 105: 271-285.
  • 29. Mu, Q., Zhao, M., Running, S.W., 2011. Remote Sensing of Environment Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115: 1781-1800.
  • 30. Nouri, H., Beecham, S., Anderson, S., Hassanli, A.M., Kazemi, F., 2015. Remote sensing techniques for predicting evapotranspiration from mixed vegetated surfaces. Urban Water Journal, 12: 380-393.
  • 31. Nowicki, Z., 2000. Objaśnienia do Mapy Geologicznej Polski, skala 1:50 000, arkusz Kadzidło (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 32. Richter, R., Schläpfer, D., 2016. Atmospheric/Topographic Correction for Satellite Imagery (ATCOR-2/3 User Guide, Version 9.0.2). ReSe Applications Schläpfer. Wil, Switzerland.
  • 33. Roy, D.P., Kovalskyy, V., Zhang, H.K., Vermote, E.F., Yan, L., Kumar, S.S., Egorov, A., 2016. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185: 57-70.
  • 34. Running, S. W., Mu, Q., Zhao, M., Moreno, A., 2019. User’s Guide. MODIS Global Terrestrial Evapotranspiration ( ET ) Product NASA Earth Observing System MODIS Land Algorithm, Washington DC, USA.
  • 35. Schulte, R.P.O., Diamond, J., Finkele, K., Holden, N.M., Brereton, A.J., 2005. Predicting the soil moisture conditions of Irish grasslands. Irish Journal of Agricultural and Food Research, 44 : 95-110.
  • 36. Senay, G.B., Bohms, S., Singh, R.K., Gowda, P.H., Velpuri, N.M., Alemu, H., Verdin, J.P., 2013. Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach. Journal of the American Water Resources Association, 49: 577-591.
  • 37. Senay, G.B., Friedrichs, M., Singh, R.K., Velpuri, N.M., 2016. Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin. Remote Sensing of Environment, 185: 171-185.
  • 38. Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B.,Teuling, A.J., 2010. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Science Reviews, 99: 125-161.
  • 39. Singh, R., Senay, G., 2015. Comparison of Four Different Energy Balance Models for Estimating Evapotranspiration in the Midwestern United States. Water, 8-9: 1-19.
  • 40. Soczyńska, U. (ed.), 1989. Procesy hydrologiczne (in Polish). Państwowe Wydawnictwo Naukowe, Warszawa.
  • 41. Stopa-Boryczka, M., Boryczka, J., Wawer, J., Grabowska, K., Dobrowolska, M., Osowiec, M., Błażek, E., Skrzypczuk, J., Grzęda, M., 2013. Klimat Północno-wschodniej Polski według podziału fizycznogeograficznego J. Kondrackiego i J. Ostrowskiego (in Polish). Wydział Geografii i Studiów Regionalnych, Warszawa.
  • 42. Teuling, A.J., 2018. A forest evapotranspiration paradox investigated using lysimeter data. Vadose Zone Journal, 17: 1-7.
  • 43. US Geological Survey, 2019. Landsat 8 (L8) Data Users Handbook (4th ed.) Sioux Falls, USA. https://www.usgs.gov/media/files/landsat-8-data-users-handbook.
  • 44. Velpuri, N.M., Senay, G.B., Singh, R.K., Bohms, S., Verdin, J.P., 2013. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sensing of Environment, 139: 35-49.
  • 45. Wang, K., Dickinson, R.E., 2012. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics, 50: 1-54.
  • 46. World Meteorological Organisation (WMO), 2008. Guide to Hydrological Practices: Volume I: Hydrology - from measurement to hydrological information (sixth edition). WMO Report No. 168 (Vol. I).
  • 47. Zhang, L., Dawes, W.R., Walker, G.R., 2001. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 37: 701-708.
  • 48. Żuk, R., 1999. Objaśnienia do Szczegółowej Mapy Geologicznej Polski, skala 1:50 000, arkusz Świetajno (216) (in Polish). Ministerstwo Środowiska, Państwowy Instytut Geologiczny, Warszawa.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cd5fed4-2f98-47cb-ae37-7d63a65424e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.