Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Methods of biocatalysts immobilization in organic synthesis
Języki publikacji
Abstrakty
Rozwój skutecznych metod stabilizacji enzymów jest kluczowy dla ewolucji i przemysłowego wdrażania procesów biokatalitycznych. Ciekawe podejście łączy proces stabilizacji białek w cieczach jonowych z immobilizacją fazy aktywnej na stałym nośniku. W efekcie otrzymuje się stabilne, aktywne i heterogeniczne biokatalizatory. Procesy heterogeniczne w produkcji niosą ze sobą wiele korzyści, jak np. łatwe oddzielenie biokatalizatora od mieszaniny reakcyjnej oraz możliwość recyklingu. W związku z tym przeprowadzono przegląd związany z wykorzystaniem materiałów typu supported ionic liquid phases jako skutecznych nośników w stabilizacji enzymów i ich zastosowaniu zarówno w procesach biokatalitycznych w systemie z przepływem ciągłym, jak i okresowym.
Literature review, with 40 refs., of methods of enzyme immobilization in the reaction medium. Phys. (adsorption, trapping) and chem. (cross-linking, covalent bonding) enzyme immobilization techniques were discussed. The use of supported ionic liquid phase (SLIP) and supported ionic liquid-like phase (SILLP) as effective techniques for enzyme stabilization was presented. Examples of the use of immobilized enzymes on SILP and SILLP carriers in various chem. processes were presented.
Wydawca
Czasopismo
Rocznik
Tom
Strony
36--40
Opis fizyczny
Bibliogr. 40 poz., tab.
Twórcy
autor
- Katedra Technologii Chemicznej Organicznej i Petrochemii, Politechnika Śląska, Krzywoustego 4, 44-100 Gliwice
autor
- Katedra Technologii Chemicznej Organicznej i Petrochemii, Politechnika Śląska, Krzywoustego 4, 44-100 Gliwice
Bibliografia
- [1] R.A Sheldon: Green chemistry and resource efficiency: towards a green economy. Green Chemistry 2016, 18, 3180-3183
- [2] P. Anastas, M. Nolasco, F. Kerton, M. Kirchhoff, P. Licence, T. Pradeep, B. Subramaniam, A. Moores: The Power of the United Nations Sustainable Development Goals in Sustainable Chemistry and Engineering Research. ACS Sustainable Chem. Eng. 2021, 9, 24, 8015–8017
- [3] A. Basso, S. Serban: Industrial applications of immobilized enzymes—A review. Molecular Catalysis 2019, 479, 110607
- [4] C.K. Savile, J.M. Janey, E.C. Mundorff, J.C. Moore, S. Tam, W.R. Jarvis, J.C. Colbeck, A. Krebber, F.J. Fleitz, J. Brands, P.N. Devine, G.W. Huisman, G.J. Hughes: Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture: Science 2010, 329, pp. 305-309
- [5] P.K Robinson Enzymes: principles and biotechnological applications. Essays Biochem. 2015, 59, 1–41
- [6] T.Jesionowski, J. Zdarta, B.Krajewska: Enzyme immobilization by adsorption: a review. Adsorption 2014, 20, 801–821
- [7] M. R.A. Khana: Immobilized enzymes: a comprehensive review. Bull Natl Res Cent 2021, 45 ,207
- [8] S. Datta, L. R. Christena, Y. R. S. Rajaram: Enzyme immobilization: an overview on techniques and support materials. Biotech., 2013; 3(1), 1–9
- [9] C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente: Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology 2007, 40, 1451–1463
- [10] A. Wolny, A. Chrobok: Silica-Based Supported Ionic Liquid-like Phases as Heterogeneous Catalysts. Molecules 2022, 27(18), 5900
- [11] A. Wolny, A. Chrobok: Ionic Liquids for Development of Heterogeneous Catalysts Based on Nanomaterials for Biocatalysis. Nanomaterials 2021, 11(8), 2030
- [12] E. P. Cipolatti, A. Valério, R. O. Henriques, D. E. Moritz, J. L. Ninow, D. M. G. Freire, E. A. Manoel, R. Fernandez-Lafuente, D. de Oliveira: Nanomaterials for biocatalyst immobilization – state of the art and future trends. RSC Adv., 2016,6, 104675-104692
- [13] R. Fernandez-Lafuente, P. Armisén, P. Sabuquillo, G. Fernández-Lorente, J.M. Guisán: Immobilization of lipases by selective adsorption on hydro phobic supports. Chemistry and Physics of Lipids 1998, 93, 185–197
- [14] S. Arana-Peña, N.S. Rios, D. Carballares, L.R.B. Gonçalves, R. Fernandez-Lafuente, Immobilization of lipases via interfacial activation on hydrophobic supports: Production of biocatalysts libraries by altering the immobilization conditions, Catal. Today 2021 362 130–140
- [15] R.L. Vekariya: A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq. 2017, 227, 44–60
- [16] A.S. Amarasekara: Acidic Ionic Liquids. Chem. Rev. 2016, 116, 6133–6183
- [17] A.J. Greer, J. Jacquemin, C. Hardacre: Industrial applications of ionic liquids. Molecules 2020, 25, 5207
- 18] A. Wolny, A. Chrobok: Supported Ionic Liquid Phase for Biocatalysis: The Current Applications, Synthesis and Prospects. Current Organic Chemistry, 2023, 27, 1119-1122
- [19] P. Domínguez de María: Ionic Liquids in Biotransformations and Organocatalysis: Solvents and Beyond John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 1–435
- [20] E. Garcia-Verdugo, P. Lozano, S.V. Luis: Biocatalytic Processes Based on Supported Ionic Liquids. In Supported Ionic Liquids: Fundamental and Applications, 1st ed.; Fehrmann, R., Riisager, A., Haumann, M., Eds.; Wiley-VCH Verlag GmbH: Berlin, Germany, 2014; pp. 351–368
- [21] T. Itoh: Ionic liquids as tool to improve enzymatic organic synthesis. Chem. Rev. 2017, 117, 10567–10607
- [22] H. Zhao: Methods for stabilizing and activating enzymes in ionic liquids—A review. J. Chem. Technol. Biotechnol. 2010, 85, 891–907
- [23] A.P. De Los Ríos, F.J Hernández-Fernández, F.A Martínez, M. Rubio, G. Víllora: The effect of ionic liquid media on activity, selectivity and stability of Candida antarcticalipase B in transesterification reactions. Biocatal. Biotransform. 2007, 25, 151–156
- [24] S.J Nara, J.R Harjani, M.M Salunkhe: Lipase-catalysed transesterification in ionic liquids and organic solvents: A comparative study. Tetrahedron Lett. 2002, 43, 2979–2982
- [25] K. Nakashima, J. Okada, T. Maruyama, N. Kamiya, M. Goto: Activation of lipase in ionic liquids by modification with comb-shaped poly(ethylene glycol). Sci. Technol. Adv. Mater. 2006, 7, 692–698
- [26] W.-G. Zhang, D.Z. Wei, X.-P. Yang, Q.-X. Song: Penicillin acylase catalysis in the presence of ionic liquids. Bioprocess Biosyst. Eng. 2006, 29, 379–383
- [27] M.B. Turner, S.K. Spear, J.G. Huddleston, J.D. Holbrey, R.D.Rogers: Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chem. 2003, 5, 443
- [28] S.H. Lee, S.H. Ha, S.B. Lee, Y.-M.Koo: Adverse effect of chloride impurities on lipase-catalyzed transesterifications in ionic liquids. Biotechnol. Lett. 2006, 28, 1335–1339
- [29] X. Qiu, S. Wang, S. Miao, H. Suo, H. Xu, Y. Hu: Co-immobilization of Laccase and ABTS onto amino-functionalized ionic liquid-modified magnetic chito san nanoparticles for pollutants removal.J. Hazard. Mater. 2020, 123353
- [30] P. Lozano, T. Diego, D. de Carrié, M. Vaultier, J.L. lborra: Continuous green biocatalytic processes using ionic liquids and supercritical carbon dioxide. Chem. Commun. 2002, 7, 692–693
- [31] B. Sandig, L. Michalek, S. Vlahovic, M. Antonovici, B. Hauer, M.R.Buchmeiser: A Monolithic hybrid cellulose-2.5-Acetate/polymer bioreactor for biocataly sis under continuous liquid-liquid conditions using a supported ionic liquid phase. Chem. Eur. J. 2015, 21, 15835–15842
- [32] B. Sandig, M.R. Buchmeiser: Highly productive and enantioselective enzyme catalysis under continuous supported liquid-liquid conditions using a hybrid monolithic bioreactor. ChemSusChem 2016, 9, 2917–2921
- [33] P. Lozano, E. García-Verdugo, R. Piamtongkam, N. Karbass, T. De Diego, M.I. Burguete, S.V. Luis, J.L. Iborra: Bioreactors based on monolith-supported ionic liquid phase for enzyme catalysis in supercritical carbon dioxide. Adv. Synth. Catal. 2007, 349, 1077–1084
- [34] R.C Rodrigues, K. Hernandez, O. Barbosa, N. Rueda, C. Garcia-Galan, J.C.S. dos Santos, A. Berenguer-Murcia, R. Fernandez-Lafuente: Immobilization of proteins in poly-styrene-divinylbenzene matrices: Functional properties and applications. Curr. Org. Chem. 2015, 19, 1707–1718
- [35] P. Lozano, E. García-Verdugo, N. Karbass, K. Montague, T. De Diego, M.I. Burguete, S.V.Luis: Supported ionic liquid-like phases (SILLPs) for enzymatic processes: Continuous KR and DKR in SILLP–scCO2 systems. Green Chem. 2010, 12, 1803
- [36] D.F. Izquierdo, J.M. Bernal, M.I. Burguete, E. García-Verdugo, P. Lozano, S.V. Luis: An efficient microwave-assisted enzymatic resolution of alcohols using a lipase immobilised on supported ionic liquid-like phases (SILLPs). RSC Adv. 2013, 3, 13123
- [37] P. Hara, J.-P. Mikkola, D.Y. Murzin, L.T. Kanerva: Supported ionic liquids in Burkholderia cepacia lipase-catalyzed asymmetric acylation. J. Mol. Catal. B Enzym. 2010, 67, 129–134.
- [38] A. Wolny, A. Siewniak, J. Zdarta, F. Ciesielczyk, P. Latos S. Jurczyk, L.D. Nghiem, T. Jesionowski, A.Chrobok: Supported ionic liquid phase facilitated catalysis with lipase from Aspergillus oryzae for enhance enantiomeric resolution of racemic ibuprofen. Environmental Technology & Innovation 2022, 28, 102936
- [39] X. Wan, S. Tang, X. Xiang, H. Huang, Y. Hu: Immobilization of Candida antarctic Lipase B on functionalized ionic liquid modified MWNTs. Appl. Biochem. Biotechnol. 2017, 183, 807–819
- [40] X. Xiang, S. Ding, H. Suo, C. Xu, Z. Gao, Y. Hu: Fabrication of chitosan mesoporous silica SBA-15 nanocomposites via functional ionic liquid as the bridging agent for PPL immobilization. Carbohydr. Polym. 2018, 182, 245–253.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cd0903e-4a86-4064-961d-78b5caa5f13c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.