PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distributions of photosynthetic and photoprotecting pigment concentrations in the water column in the Baltic Sea : an improved mathematical description

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mathematical formulas are given to describe the changes with depth of concentrations of chlorophylls b, c, and photosynthetic and photoprotecting carotenoids in Baltic phytoplankton resulting from the adaptation of algal cells to ambient conditions. They take into account the spectral variability and differences in intensity, characteristic of the Baltic, in the irradiance penetrating the water, and also the spectral similarities among the spectra of different groups of phytoplankton pigments. The formulas were derived and validated on the basis of an extensive set of empirical data acquired from different parts of the Baltic Sea in 1999-2016. The standard error factor x of these formulas ranges from 1.32 to 1.73. These values are lower than those obtained for formulas derived for ocean waters, in which the influence of allogenic constituents on optical properties is negligibly small: 1.44 and 1.52 respectively in the case of chlorophyll c, and 1.32 and 1.47 respectively for photoprotecting carotenoids. With these formulas, overall levels of the main groups of pigments can be calculated from known irradiance conditions and chlorophyll a concentrations at any depth in a layer equal to one and a half thicknesses of the euphotic layer (i.e. to an optical depth of τ = 7) in theBaltic.The accuracy of these approximations is close to that of estimates of other bio-optical characteristics in this sea. This was confirmed by a validation based on an independent dataset (x from 1.27 to 1.84).
Czasopismo
Rocznik
Strony
1--16
Opis fizyczny
Bibliogr. 88 poz., mapa, tab., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Physics, Pomeranian University in Słupsk, Słupsk, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • [1] Araujo, M. L. V., Mendes, C. R. B., Tavano, V. M., Garcia, C. A. E., Baringer, M. O., 2017. Contrasting patterns of phytoplankton pigments and chemotaxonomic groups along 30°S in the subtropical South Atlantic Ocean. Deep-Sea Res. Pt. I 120, 112-121, http://dx.doi.org/10.1016/j.dsr.2016.12.004.
  • [2] Babin, M., Sadoudi, N., Lazzara, L., Gostan, J., Partensky, F., Bricaud, A., Veldhuis, M., Morel, A., Falkowski, P. G., 1996. Photoacclimation strategy of Prochlorococcus sp. and consequences on large scale variations of photosynthetic parameters, Ocean Optics 13. Proc. SPIE 2963, 314-319, http://dx.doi.org/10.1117/12.266462.
  • [3] Barlow, R. G., Mantoura, R. F. C., Gough, M. A., Fileman, T. W., 1993. Pigment signatures of the phytoplankton composition in the northeastern Atlantic during the 1990 spring bloom. Deep-Sea Res. Pt. II 40 (1/2), 459-477.
  • [4] Berner, T., Dubinsky, Z., Wyman, K., Falkowski, P. G., 1989. Photoadaptation and the 'package effect' in Dunaliella tertiolecta (Chlorophyceae). J. Phycol. 25 (1), 70-78, http://dx.doi.org/10.1111/j.0022-3646.1989.00070.x.
  • [5] Bricaud, A., Morel, A., Prieur, L., 1983. Optical efficiency factors of some phytoplankters. Limnol. Oceanogr. 28 (5), 816-832, http://dx.doi.org/10.4319/lo.1983.28.5.0816.
  • [6] Bricaud, A., Claustre, H., Ras, J., Oubelkheir, K., 2004. Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. J. Geophys. Res. 109, C11010, http://dx.doi.org/10.1029/2004JC002419.
  • [7] Cherukuru, N., Davies, P. L., Brando, V. E., Anstee, J. M., Baird, M. E., Clementson, L. A., Doblin, M. A., 2016. Physical oceanographic processes influence bio-optical properties intheTasmanSea. J. SeaRes. 110, 1-7, http://dx.doi.org/10.1016/j.seares.2016.01.008.
  • [8] Darecki, M., Ficek, D., Krężel, A., Ostrowska, M., Majchrowski, R., Woźniak, S. B., Bradtke, K., Dera, J., Woźniak, B., 2008. Algorithms for the remote sensing of the Baltic ekosystem (DESAMBEM). Part 2: Empirical validation. Oceanologia 50 (4), 509-538.
  • [9] Demmig-Adams, B., 1990. Carotenoids and photoprotection in plants: a role of xanthophyll zeaxanthin. Biochim. Biophys. Acta 1020 (1), 1-24, http://dx.doi.org/10.1016/0005-2728(90)90088-L.
  • [10] Dera, J., 1995. Underwater irradiance as a factor affecting primary production. Diss. and monogr, 7. IO PAN, Sopot, 110 pp.
  • [11] Dera, J., Woźniak, B., 2010. Solar radiation in the Baltic Sea. Oceanologia 52 (4), 533-582, http://dx.doi.org/10.5697/oc.52-4.533.
  • [12] Dickey, T., Granata, T., Marra, J., Langdon, C., Wiggert, J., Chai-Jochner, Z., Hamilton, M., Vazquez, J., Stramska, M., Bidigare, R., Siegel, D., 1993. Seasonal variability of bio-optical and physical properties in the Sargasso Sea. J. Geoph. Res. Oceans 98 (C1), 865-898, http://dx.doi.org/10.1029/92JC01830.
  • [13] Falkowski, P. G., LaRoche, J., 1991. Acclimation to spectral irradiance in algae. J. Phycol. 27 (1), 8-14, http://dx.doi.org/10.1111/j.0022-3646.1991.00008.x.
  • [14] Ficek, D., Kaczmarek, S., Stoń-Egiert, J., Woźniak, B., Majchrowski, R., Dera, J., 2004. Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data. Oceanologia 46 (4), 533-555.
  • [15] Harrison, W. G., Platt, T., 1986. Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations. Polar Biol. 5 (3), 153-164, http://dx.doi.org/10.1007/BF00441695.
  • [16] Harvey, E. T., Kratzer, S., Andersson, A., 2015. Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea. AMBIO 44 (Suppl. 3), S392-S401, http://dx.doi.org/10.1007/s13280-015-0658-4.
  • [17] Henriksen, P., Riemann, B., Kaas, H., Sorensen, H. M., Sorensen, H. L., 2002. Effects of nutrient-limitation and irradince on marine phytoplankton pigments. J. Plankton Res. 24 (9), 835-858, http://dx.doi.org/10.1093/plankt/24.9.835.
  • [18] Ho, T.-Y., Pan, X., Yang, H.-H., Wong, G. T. F., Shiah, F.-K., 2015. Controls on temporal and spatial variations of phytoplankton pigment distribution in the Northern South China Sea. Deep Sea Res. II 117, 65-85, http://dx.doi.org/10.1016/j.dsr2.2015.05.015.
  • [19] Hoffmann, B., Senger, H., 1988. Kinetics of photosynthesis apparatus adaptation in Scenedesmus obliquus to change in irradiance and light quality. Photochem. Photobiol. 47 (5), 737-739, http://dx.doi.org/10.1111/j.1751-1097.1988.tb02773.x.
  • [20] Jeffrey, S. W., 1997. Structural relationships between algal chlorophylls. In: Jeffrey, S. W., Mantoura, R. F. C., Wright, S. W. (Eds.), Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods, UNESCO Publishing, Paris. 566-571.
  • [21] Jeffrey, S. W., Vesk, M., 1997. Introduction to marine phytoplankton and their pigment signatures. In: Jeffrey, S. W., Mantoura, R. F. C., Wright, S. W. (Eds.), Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. UNESCO Publishing, Paris, 37-84.
  • [22] Kim, H.-C., Son, S., Kim, Y. H., Khim, J. S., Nam, J., Chang,W. K., Lee, J.-H., Ryu, J., 2017. Remote sensing and water quality indicators in the Korean West coast: Spatio-temporal structures of MODISderived chlorophyll-a and total suspended solids. Mar. Pollution Bull. 121, 425-434, http://dx.doi.org/10.1016/j.marpolbul.2017.05.026.
  • [23] Kowalczuk, P., Olszewski, J., Darecki, M., Kaczmarek, S., 2005. Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters. Int. J. Remote Sens. 26 (2), 345-370, http://dx.doi.org/10.1080/01431160410001720270.
  • [24] Levin, I., Darecki, M., Sagan, S., Radomyslskaya, T., 2013. Relationships between inherent optical properties in the Baltic Sea for application to the underwater imaging problem. Oceanologia 55 (1), 11-26, http://dx.doi.org/10.5697/oc.55-1.011.
  • [25] Louda, J. W., Li, J., Liu, L., Winfree, M. N., Baker, E. W., 1998. Chlorophyll-a degradation during senescence and death. Org. Geochem. 29 (5-7), 1233-1251, http://dx.doi.org/10.1016/j.orggeochem.2011.03.018.
  • [26] Majchrowski, R., Ostrowska, M., 1999. Modified relationships between the occurrence of photoprotecting carotenoids of phytoplankton and Potentially Destructive Radiation in the sea. Oceanologia 41 (4), 589-599.
  • [27] Majchrowski, R., Ostrowska, M., 2000. Influence of photo- and chromatic acclimation on pigment composition in the sea. Oceanologia 42 (2), 157-175.
  • [28] Majchrowski, R., Ostrowska, M., 2009. Mathematical description of vertical algal accessory pigment distributions in oceans — a brief presentation. Oceanologia 51 (4), 561-580, http://dx.doi.org/10.5697/oc.51-4.561.
  • [29] Majchrowski, R., Stoń-Egiert, J., Ostrowska, M., Woźniak, B., Ficek, D., Lednicka, B., Dera, J., 2007. Remote sensing of vertical phytoplankton pigment distributions in the Baltic: new mathematical expressions. Part 2: Accessory pigment distribution. Oceanologia 49 (4), 491-511.
  • [30] Mantoura, R. F. C., Llewellyn, C. A., 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal. Chim. Acta 151, 297-314.
  • [31] Mantoura, R. F. C., Repeta, D. J., 1997. Calibration methods for HPLC. In: Jeffrey, S. W., Mantoura, R. F. C., Wright, S. W. (Eds.), Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. UNESCO Publ., Paris, 407-428.
  • [32] Mantoura, R. F. C., Wright, S. W., Jeffrey, S. W., Barlow, R. G., Cummings, D. E., 1997. Filtration and storage of pigments from microalgae. In: Jeffrey, S. W., Mantoura, R. F. C., Wright, S. W. (Eds.), Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. UNESCO Publ., Paris, 283-305.
  • [33] Meler, J., Kowalczuk, P., Ostrowska, M., Ficek, D., Zabłocka, M., Zdun, A., 2016. Parameterization of the light absorption properties of chromophoric dissolved organic matter in the Baltic Sea and Pomeranian lakes. Ocean Sci. 12, 1013-1032, http://dx.doi.org/10.5194/os-12-1013-2016.
  • [34] Meler, J., Ostrowska, M., Stoń-Egiert, J., Zabłocka, M., 2017. Seasonal and spatial variability of light absorption by suspended particles in the southern Baltic: A mathematical description. J. Mar. Sys. 170, 68-87, http://dx.doi.org/10.1016/j.jmarsys.2016.10.011.
  • [35] Mendes, C. R., Sá, C., Vitorino, J., Borges, C., Garcia, V. M. T., Brotas, V., 2011. Spatial distribution of phytoplankton assemblages in the Nazaré submarine canyon region (Portugal): HPLC-CHEMTAX approach. J. Mar. Sys. 87, 90-101, http://dx.doi.org/10.1016/j.jmarsys.2016.10.011.
  • [36] Mitchell, B. G., Kiefer, D. A., 1988. Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton. Deep-Sea Res. 35, 639-663, http://dx.doi.org/10.1016/0198-0149(88)90024-6.
  • [37] Mobley, C. D., 1994. Light and Water, Radiative Transfer in Natural Waters. Acad. Press, San Diego, USA, 592 pp.
  • [38] Morel, A., Lazzara, L., Gostan, G., 1987. Growth rate and quantum yield time response for a diatom to changing irradiances (energy and color). Limnol. Oceanogr. 32 (5), 1066-1084, http://dx.doi.org/10.4319/lo.1987.32.5.1066.
  • [39] Ostrowska, M., Darecki, M., Krężel, A., Ficek, D., Furmańczyk, K., 2015a. Practical applicability and preliminary results of the Baltic environmental satellite remote sensing system (SatBałtyk). Polish Mart. Res. 3 (22), 43-49, http://dx.doi.org/10.1515/pomr-2015-0055.
  • [40] Ostrowska, M., Stoń-Egiert, J., Woźniak, B., 2015b. Modified methods for defining the chlorophyll concentration in the sea using submersible fluorimeters — Theoretical and quantitative analysis. Cont. Shelf Res. 109, 46-54, http://dx.doi.org/10.1016/j.csr.2015.09.009.
  • [41] Pan, X., Mannino, A., Russ, M. E., Hooker, S. B., Harding Jr., S. B., 2010. Remote sensing of phytoplankton pigment distribution in the United States northeast coast. Remote Sens. Environ. 114, 2403-2416, http://dx.doi.org/10.1016/j.rse.2010.05.015.
  • [42] Parsons, T. R., Maita, Y., Lalli, C. M., 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford, 173 pp.
  • [43] Porra, R. J., Pfündel, E. E., Engel, N., 1997. Metabolism and function of photosynthetic pigments. In: Jeffrey, S. W., Mantoura, R. F. C., Wright, S. W. (Eds.), Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. UNESCO Publ., Paris, 85-126.
  • [44] Prieur, L., Sathyendranath, S., 1981. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials. Limnol. Oceanogr 26 (4), 671-689, http://dx.doi.org/10.4319/lo.1981.26.4.0671.
  • [45] Repeta, D. J., Bjørnland, T., 1997. Preparation of carotenoids standards. In: Jeffrey, S. W., Mantoura, R. F. C., Wright, S. W. (Eds.), Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. UNESCO Publ., Paris, 239-260.
  • [46] Roy, S., Llewellyn, C. A., Egeland, E. S., Johnsen, G., 2011. Phytoplankton Pigments, Characterization, Chemotaxonomy and Applications in Oceanography. Cambridge Univ. Press, 845 pp.
  • [47] Sathyendranath, S., Lazzara, L., Prieur, L., 1987. Variations in the spectral values of specific absorption of phytoplankton. Limnol. Oceanogr. 32 (2), 403-415, http://dx.doi.org/10.4319/lo.1987.32.2.0403.
  • [48] Scheer, H., 1991. Structure and occurrence of chlorophylls. In: Scheer, H. (Ed.), Chlorophylls. CRC Press, Boca Raton, 3-30.
  • [49] Schlüter, L., Mohlenberg, F., Havskum, H., Larsen, S., 2000. The use of phytoplankton pigments for identifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios. Mar. Ecol.-Prog. Ser. 192, 49-63, http://dx.doi.org/10.3354/meps192049.
  • [50] Simis, S. G. H., Ylöstalo, P., Kallio, K. Y., Spilling, K., Kutser, T., 2017. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea. PLoS ONE 12 (4), e0173357, http://dx.doi.org/10.1371/journal.pone.0173357.
  • [51] Smith Jr., W. O., Dinniman, M. S., Tozzi, S., DiTullio, G. R., Mangoni, O., Modigh, M., Saggiomo, V., 2010. Phytoplankton photosynthetic pigments in the Ross Sea: Patterns and relationships among functional groups. J. Mar. Sys. 82, 177-185.
  • [52] Soja-Woźniak, M., Darecki, M., Wojtasiewicz, B., Bradtke, K., 2018. Laboratory measurements of remote sensing reflectance of selected phytoplankton species from the Baltic Sea. Oceanologia 60 (1), 86-96, http://dx.doi.org/10.1016/j.oceano.2017.08.001.
  • [53] Sosik, H. M., Mitchell, B. G., 1991. Absorption, fluorescence, and quantum yield for growth in nitrogen-limited Dunaliella tertiolecta. Limnol. Oceanogr. 36 (5), 910-921, http://dx.doi.org/10.4319/lo.1991.36.5.0910.
  • [54] Staehr, P. A., Henriksen, P., Markager, S., 2002. Photoacclimation of four marine phytoplankton species to irradiance and nutrient availability. Mar. Ecol. Prog. Ser. 238, 47-59, http://dx.doi.org/10.3354/meps238047.
  • [55] Stedmon, C. A., Markager, S., Kaas, H., 2000. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters. Est. Coast. Shelf Sci. 51, 267-278, http://dx.doi.org/10.1006/ecss.2000.0645.
  • [56] Stoń, J., Kosakowska, A., 2002. Phytoplankton pigments designation — an application of RP-HPLC in qualitative and quantitative analysis. J. Appl. Phycol. 14 (3), 205-210, http://dx.doi.org/10.1023/A:1019928411436.
  • [57] Stoń-Egiert, J., Kosakowska, A., 2005. RP-HPLC determination of phytoplankton pigments — comparison of calibration results for two columns. Mar. Biol. 147 (1), 251-260, http://dx.doi.org/10.1007/s00227-004-1551-z.
  • [58] Stoń-Egiert, J., Łotocka, M., Ostrowska, M., Kosakowska, A., 2010. The influence of biotic factors on phytoplankton pigment composition and resources in Baltic ecosystems: new analytical results. Oceanologia 52 (1), 101-125, http://dx.doi.org/10.5697/oc.52-1.101.
  • [59] Stoń-Egiert, J., Majchrowski, R., Darecki, M., Kosakowska, A., Ostrowska, M., 2012. Influence of underwater light fields on pigment characteristics in the Baltic Sea — results of statistical analysis. Oceanologia 54 (1), 7-27, http://dx.doi.org/10.5697/oc.54-1.007.
  • [60] Stramska, M., Zuzewicz, A., 2013. Comparison of primary productivity estimates in the Baltic Sea based on the DESAMBEM algorithm with estimates based on other similar algorithms. Oceanologia 55 (1), 77-100, http://dx.doi.org/10.5697/oc.55-1.077.
  • [61] Stramski, D., Sciandra, A., Claustre, H., 2002. Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana. Limnol. Oceanogr. 47 (2), 392-403, http://dx.doi.org/10.4319/lo.2002.47.2.0392.
  • [62] Strutton, P. G., Martz, T. D., DeGrandpre, M. D., McGillis, W. R., Drennan, W. M., Boss, E., 2011. Bio-optical observations of the 2004 Labrador Sea phytoplankton bloom. J. Geoph. Res. 116, C11037.
  • [63] Sukenik, A., Bennett, J., Mortain-Bertrand, A., Falkowski, P. G., 1990. Adaptation of photosynthetic apparatus to irradiance in Dunaliella tertiolecta. Plant Physiol. 92 (4), 891-898, http://dx.doi.org/10.1104/pp.92.4.891.
  • [64] Swan, C. M., Vogt, M., Gruber, N., Laufkoetter, C., 2016. A global seasonal surface ocean climatology of phytoplankton types based on CHEMTAX analysis of HPLC pigments. Deep-Sea Res. Pt. I, 109, 137-156, http://dx.doi.org/10.1016/j.dsr.2015.12.002.
  • [65] Thamm, R., Schernewski, G., Wasmund, N., Neumann, T., 2004. Spatial phytoplankton pattern in the Baltic Sea. In: Schernewski, G., Wielgat, S. (Eds.), Baltic Sea Typology Coastline Reports 4, Warnemünde, 85-109.
  • [66] Trees, C. C., Clark, R. D. K., Bidigare, R., Ondrusek, M. E., Mueller, J. L., 2000. Accessory pigments versus chlorophyll A concentrations within the euphotic zone: A ubiquitous relationship. Limnol. Oceanogr. 45 (5), 1130-1143, http://dx.doi.org/10.4319/lo.2000.45.5.1130.
  • [67] Uitz, J., Claustre, H., Morel, A., Hooker, S. B., 2006. Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll. J. Geophys. Res. 111 (C8), C08005, http://dx.doi.org/10.1029/2005JC003207.
  • [68] Uitz, J., Stramski, D., Reynolds, R. A., Dubranna, J., 2015. Assessing phytoplankton community composition from hyperspectral measurements of phytoplankton absorption coefficient and remote-sensing reflectance in open-ocean environments,. Remote Sens. Environ. 171, 58-74, http://dx.doi.org/10.1016/j.rse.2015.09.027.
  • [69] Wasmund, N., Breuel, G., Edler, L., Kuosa, H., Olsonen, R., Schultz, H., Pys-Wolska, M., Wrzołek, L., 1996. Pelagic biology. In: Third periodic assessment of the state of marine environment of the Baltic Sea, 1989-93, Balt. Sea Environ. Proc. No. 64B, HELCOM Background doc. 89-93.
  • [70] Wasmund, N., Uhlig, S., 2003. Phytoplankton in large river plumes in the Baltic Sea,. ICES J. Mar. Sci. 56, 23-32.
  • [71] Wänstrand, I., Snoeijs, P., 2006. Phytoplankton community dynamics assessed by ships-of-opportunity sampling in the northern Baltic Sea: A comparison of HPLC pigment analysis and cell counts. Est. Coast. Shelf Sci. 66 (1-2), 135-146, http://dx.doi.org/10.1016/j.ecss.2005.08.003.
  • [72] Woźniak, B., Bradtke, K., Darecki, M., Dera, J., Dudzińska-Nowak, J., Dzierzbicka-Głowacka, L., Ficek, D., Furmańczyk, K., Kowalewski, M., Krężel, A., Majchrowski, R., Ostrowska, M., Paszkuta, M., Stoń-Egiert, J., Stramska, M., Zapadka, T., 2011. SatBałtyk — A Baltic environmental satellite remote sensing system — an ongoing project in Poland. Part 1: Assumptions, scope and operating range. Oceanologia 53 (4), 897-924, http://dx.doi.org/10.5697/oc.53-4.897.
  • [73] Woźniak, B., Dera, J., 2007. Light Absorption in Sea Water. Springer, New York, 454 pp.
  • [74] Woźniak, B., Dera, J., Ficek, D., Majchrowski, R., Kaczmarek, S., Ostrowska, M., Koblentz-Mishke, O. J., 1999. Modelling the influence of acclimation on the absorption properties of marine phytoplankton. Oceanologia 41 (2), 187-210.
  • [75] Woźniak, B., Dera, J., Ficek, D., Majchrowski, R., Ostrowska, M., Kaczmarek, S., 2003. Modelling light and photosynthesis in the marine environment. Oceanologia 45 (2), 171-245.
  • [76] Woźniak, B., Dera, J., Majchrowski, R., Ficek, D., Koblenz-Mishke, O. J., Darecki, M., 1997a. 'IOPAS initial model' of marine primary production for remote sensing application. Oceanologia 39 (4), 377-395.
  • [77] Woźniak, B., Dera, J., Majchrowski, R., Ficek, D., Koblentz-Mishke, O. J., Darecki, M., 1997b. Statistical relationships between photosynthesis and abiotic conditions in the ocean — the IO PAS initial model for remote sensing application. SPIE vol. 3222, 516-528.
  • [78] Woźniak, B., Hapter, R., Maj, B., 1983. The inflow of solar energy and the irradiance of the euphotic zone in the region of Ezcurra Inlet during the Antarctic summer of 1977/78. Oceanologia 15, 141-174.
  • [79] Woźniak, B., Krężel, A., Darecki, M.,Woźniak, S. B., Majchrowski, R., Ostrowska, M., Kozłowski, Ł., Ficek, D., Olszewski, J., Dera, J., 2008. Algorithm for the remote sensing of the Baltic ecosystem(DESAMBEM). Part 1: Mathematical apparatus. Oceanologia 50 (4), 451-508.
  • [80] Woźniak, B., Krężel, A., Dera, J., 2004. Development of a satellite method for Baltic ecosystem monitoring (DESAMBEM) — an ongoing project in Poland. Oceanologia 46 (3), 445-455.
  • [81] Woźniak, B., Montwiłł, K., 1973. Methods and techniques of optical measurements in the sea. Stud. i Mater. Oceanol. 7, 71-108, (in Polish).
  • [82] Woźniak, B., Pelevin, V. N., 1991. Optical classifications of the seas in relation to phytoplankton characteristics. Oceanologia 31, 25-55.
  • [83] Woźniak, S. B., Meler, J., Lednicka, B., Zdun, A., Stoń-Egiert, J., 2013. Inherent optical properties of suspended particulate matter in the southern Baltic Sea. Oceanologia 53 (3), 691-729, http://dx.doi.org/10.5697/oc.53-3.691.
  • [84] Wright, S. W., Jeffrey, S. W., Mantoura, R. F. C., Llewellyn, C. A., Bjørnland, T., Repeta, D.,Welschmeyer, N., 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol.-Prog. Ser. 77, 183-196.
  • [85] Wright, S. W., Shearer, J. D., 1984. Rapid extraction and high-performance liquid chromatography of chlorophylls and carotenoids from marine phytoplankton. J. Chromatogr. 294, 281-295.
  • [86] Wulff, A., Wängberg, S.-A., 2004. Spatial and vertical distribution of phytoplankton pigments in the eastern Atlantic sector of the Southern Ocean. Deep-Sea Res. Pt. II, 51, 2701-2713, http://dx.doi.org/10.1016/j.dsr2.2001.01.002.
  • [87] Zhang, D., Lavender, S., Muller, J. P., Walton, D., Karlson, B., Kronsell, J., 2017. Determination of phytoplankton abundances (Chlorophyll-a) in The optically complex inland water — The Baltic Sea. Remote Sci. Tot. Environ. 601-602, 1060-1074, http://dx.doi.org/10.1016/j.scitotenv.2017.05.245.
  • [88] Zheng, G., DiGiacomo, P. M., 2017. Remote sensing of environment remote sensing of chlorophyll-a in coastal waters based on the light absorption coefficient of phytoplankton,. Remote Sens. Environ. 201, 331-341, http://dx.doi.org/10.1016/j.rse.2017.09.008.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cd01006-1166-433f-9f9c-d39d8b072492
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.