Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A finite element model based upon the density functional theory is developed to investigate the vibrational characteristics of armchair phosphorene nanotubes. To this end, the PP bonds are simulated by beam elements whose elastic properties are obtained from the analogy of molecular and structural mechanics. The effects of nanotube length, diameter and boundary conditions on the frequencies of armchair phosphorene nanotubes are evaluated. It is shown that the effect of nanotube radius on its natural frequency is weakened by increasing the nanotube aspect ratio. Comparing the first ten frequencies of armchair phosphorene nanotubes with different diameters, it is observed that the effect of diameter on the vibrational behavior of phosphorene nanotubes is more pronounced at higher modes.
Czasopismo
Rocznik
Tom
Strony
611--621
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
- Young Researchers and Elite Club, Langarud Branch, Islamic Azad University, Langarud, Guilan, Iran
autor
- Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran
autor
- Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran
Bibliografia
- [1] H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS Nano 8 (2014) 4033–4041.
- [2] L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9 (2014) 372–377.
- [3] S.P. Koenig, R.A. Doganov, H. Schmidt, A.C. Neto, B. Oezyilmaz, Electric field effect in ultrathin black phosphorus, Appl. Phys. Lett. 104 (2014) 103106.
- [4] D. Wang, G.C. Guo, X.L. Wei, L.M. Liu, S. Zhao, Phosphorene ribbons as anode materials with superhigh rate and large capacity for Li-ion batteries, J. Power Sources 302 (2016) 215–222.
- [5] L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, M.S. Vitiello, Black phosphorus terahertz photodetectors, Adv. Mater. 27 (2015) 5567–5572.
- [6] H. Du, X. Lin, Z. Xu, D. Chu, Recent developments in black phosphorus transistors, J. Mater. Chem. C 3 (2015) 8760–8775.
- [7] S. Zhao, W. Kang, J. Xue, The potential application of phosphorene as an anode material in Li-ion batteries, J. Mater. Chem. A 2 (2014) 19046–19052.
- [8] V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Phosphorene as an anode material for Na-ion batteries: a first-principles study, Phys. Chem. Chem. Phys. 17 (2015) 13921–13928.
- [9] T. Hu, Y. Han, J. Dong, Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains, Nanotechnology 25 (2014) 455703.
- [10] Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus, Appl. Phys. Lett. 104 (2014) 251915.
- [11] Y.Y.W. Ding, L. Shi, Z. Xu, J. Ni, Anisotropic elastic behaviour and one-dimensional metal in phosphorene, Phys. Status Solidi (RRL) 8 (2014) 939–942.
- [12] V. Sorkin, Y.W. Zhang, The deformation and failure behaviour of phosphorenenanoribbons under uniaxial tensile strain, 2D Mater. 2 (2015) 035007.
- [13] L. Wang, A. Kutana, X. Zou, B.I. Yakobson, Electro-mechanical anisotropy of phosphorene, Nanoscale 7 (2015) 9746–9751.
- [14] C.X. Wang, C. Zhang, J.W. Jiang, H.S. Park, T. Rabczuk, Mechanical strain effects on black phosphorus nanoresonators, Nanoscale 8 (2016) 901–905.
- [15] Z.D. Sha, Q.X. Pei, Z. Ding, J.W. Jiang, Y.W. Zhang, Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures, J. Phys. D: Appl. Phys. 48 (2015) 395303.
- [16] Z.D. Sha, Q.X. Pei, Z. Ding, J.W. Jiang, Y.W. Zhang, Atomic vacancies significantly degrade the mechanical properties of phosphorene, Nanotechnology 27 (2016) 315704.
- [17] G. Wang, G.C. Loh, R. Pandey, S.P. Karna, Out-of-plane structural flexibility of phosphorene, Nanotechnology 27 (2015) 055701.
- [18] N. Liu, J. Hong, R. Pidaparti, X. Wang, Fracture patterns and the energy release rate of phosphorene, Nanoscale 8 (2016) 5728–5736.
- [19] V. Sorkin, Y.W. Zhang, Mechanical properties of phosphorene nanotubes: a density functional tight-binding study, Nanotechnology 27 (2016) 395701.
- [20] V. Sorkin, Y.W. Zhang, The structure and elastic properties of phosphorene edges, Nanotechnology 26 (2015) 235707.
- [21] X. Liao, F. Hao, H. Xiao, X. Chen, Effects of intrinsic strain on the structural stability and mechanical properties of phosphorene nanotubes, Nanotechnology 27 (2016) 215701.
- [22] G.M. Odegard, T.S. Gates, L.M. Nicholson, K.E. Wise, Equivalent-continuum modeling of nano-structured materials, Compos. Sci. Technol. 62 (2002) 1869–1880.
- [23] B.R. Gelin, Molecular Modeling of Polymer Structures and Properties, Hanser Publishers; Hanser/Gardner Publications, 1994.
- [24] T. Chang, H. Gao, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model, J. Mech. Phys. Solids 51 (2003) 1059–1074.
- [25] R. Ansari, S. Rouhi, Atomistic finite element model for axial buckling of single-walled carbon nanotubes, Physica E: Low Dimens. Syst. Nanostruct. 43 (2010) 58–69.
- [26] S. Rouhi, R. Ansari, Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets, Physica E: Low Dimens. Syst. Nanostruct. 44 (2012) 764–772.
- [27] R. Ansari, S. Rouhi, M. Aryayi, M. Mirnezhad, On the buckling behavior of single-walled silicon carbide nanotubes, Sci. Iran. 19 (2012) 1984–1990.
- [28] R. Ansari, S. Rouhi, M. Mirnezhad, M. Aryayi, Stability characteristics of single-layered silicon carbide nanosheets under uniaxial compression, Physica E: Low Dimens. Syst. Nanostruct. 53 (2013) 22–28.
- [29] R. Ansari, S. Rouhi, M. Mirnezhad, M. Aryayi, Stability characteristics of single-walled boron nitride nanotubes, Arch. Civil Mech. Eng. 15 (2015) 162–170.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cc8a48b-c7f8-4edd-8fbc-d7a6ae075493