PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variability of the Water Quality Characterizing High Andean Lagoons for Tourist Use Evaluated Through Multivariate Statistical Methods, Junín, Peru

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The spatial-temporal variability characterizing the water quality of high Andean lagoons for tourist use was evaluated using multivariate statistical methods during 2017 and 2018. The water samples were collected from 14 sampling sites, with three replicates each. The water quality indicators determined were: pH, temperature, DO, COD, BOD5, P, N, Fe, Cu, Cr, Cd, Pb, Zn and chlorophyll-a. The flat cluster analysis (k R cluster) according to Ward’s algorithm showed six significantly differentiated groups (α=0.01). In turn, the real similarity profile (SIMPROF) moves markedly away from the obtained low permutation with a large excess of Euclidean similarity with a Pi value of 0.627. The PCA showed that the first two components recommended by the sedimentation analysis (Scree test) indicated 61.52% of the total variation of the observations. According to the Spearman range correlation selection criterion, the variables that best interpret the sample distributions are COD, DTS, P, Cd and Zn with a correlation of 0.893, the DTS being the most important variable with a correlation value of 0.795. The PERMANOVA analysis according to the flat cluster factor indicated that at least one of the groups is different from the others in relation to the levels of physicochemical characteristics studied. Therefore, all the configured groups are statistically different, demonstrating that each lagoon is different in relation to its physicochemical indicators, according to the season in which it is found.
Rocznik
Strony
1--11
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Universidad Nacional del Centro del Perú, Centro de Investigación en Alta Montaña, Av. Mariscal Castilla N° 3989-4089, Huancayo-Perú
  • Universidad de Guanajuato, Departamento de Estudios Culturales Demográficos y Políticos, División de Ciencias Sociales y Administrativas, México
  • Universidad Nacional del Centro del Perú, Centro de Investigación en Alta Montaña, Av. Mariscal Castilla N° 3989-4089, Huancayo-Perú
  • Universidad Nacional del Centro del Perú, Centro de Investigación en Alta Montaña, Av. Mariscal Castilla N° 3989-4089, Huancayo-Perú
  • Universidad Nacional del Centro del Perú, Centro de Investigación en Alta Montaña, Av. Mariscal Castilla N° 3989-4089, Huancayo-Perú
Bibliografia
  • 1. Alvarez-mieles, G., Irvine, K., Griensven, A. V, & Arias-hidalgo, M. (2013). Relationships between aquatic biotic communities and water quality in a tropical river – wetland system (Ecuador). Environmental Science and Policy, 34, 115–127. https://doi.org/10.1016/j.envsci.2013.01.011
  • 2. APHA/AWWA/WEF. (2012). Standard Methods for Examination of Water and Wastewater (Standard Methods for the Examination of Water and Wastewater). In American Public Health Association (APHA): Washington, DC, USA.
  • 3. Beyer, S., Kinnear, A., Hutley, L. B., McGuinness, K., & Gibb, K. (2011). Assessing the relationship between fire and grazing on soil characteristics and mite communities in a semi-arid savanna of northern Australia. Pedobiologia, 54(3), 195–200. https://doi.org/10.1016/j.pedobi.2011.03.002
  • 4. CCME (Canadian Council of Ministers of the Environment). (2007). For the protection of aquatic life 2007. In W. Canadian Council of Ministers of the Environment, 1999 (Ed.), Canadian environmental quality guidelines, 1999 (Vol. 67, pp. 14–21).
  • 5. Clarke, K. R., Somer, P. J., & Gorley, R. N. (2008). Journal of Experimental Marine Biology and Ecology Testing of null hypotheses in exploratory community analyses : similarity pro fi les and biota-environment linkage, 366, 56–69. https://doi.org/10.1016/j.jembe.2008.07.009
  • 6. Clarke, K. R., Somerfield, P. J., & Gorley, R. N. (2008). Testing of null hypotheses in exploratory community analyses: similarity profiles and biotaenvironment linkage. Journal of Experimental Marine Biology and Ecology. https://doi.org/10.1016/j.jembe.2008.07.009
  • 7. Cude, C. G. (2001). Oregon water quality index a tool for evaluating water quality management effectiveness. Journal Of The American Water Resources Association, 37(1), 125–137. https://doi.org/10.1111/j.1752–1688.2001.tb05480.x
  • 8. Custodio, M., Peñaloza, R., Chanamé, F., Yaranga, R., & Pantoja, R. (2018). Assessment of the Aquatic Environment Quality of High Andean Lagoons using Multivariate Statistical Methods in Two Contrasting Climatic Periods. Journal of Ecological Engineering, 19(6), 24–33. https://doi.org/10.12911/22998993/92677
  • 9. Custodio, M., Zapata, F. C. C., Flores, D. J. C., & Gutiérrez, W. B. (2019). Potentially toxic metals in lotic systems with aptitude for aquaculture at the watershed Mantaro River, Peru. Ambiente e Agua – An Interdisciplinary Journal of Applied Science, 14(1–14). https://doi.org/10.4136/1980–993X
  • 10. Department of Enviroment and Natural Resources Philippine. (2016). Water Quality Guidelines and General Effluent Standars. Phillippine.
  • 11. Eda, L. E. H., & Chen, W. (2010). Integrated water resources management in Peru. In Procedia Environmental Sciences (Vol. 2, pp. 340–348). https://doi.org/10.1016/j.proenv.2010.10.039
  • 12. Goher, M. E., Hassan, A. M., Abdel-moniem, I. A., Fahmy, A. H., & El-sayed, S. M. (2014). Evaluation of surface water quality and heavy metal indices of Ismailia Canal , Nile River , Egypt. The Egyptian Journal of Aquatic Research, 40(3), 225–233. https://doi.org/10.1016/j.ejar.2014.09.001
  • 13. Gray, J., Aschan, M., Carr, M., Clarke, K., Green, R., Pearson, T., … Warwick, R. (1988). Analysis of community attributes of the benthic macrofauna of Frierfjord/Langesundfjord and in a mesocosm experiment. Marine Ecology Progress Series, 46(June), 151–165. https://doi.org/10.3354/meps046151
  • 14. Guswa, A. J., Brauman, K. A., Brown, C., Hamel, P., Keeler, B. L., & Sayre, S. S. (2014). Ecosystem services: Challenges and opportunities for hydrologic modeling to support decision making. Water Resources Research, 50(5), 4535–4544. https://doi.org/10.1002/2014WR015497
  • 15. Kara, G. T., Kara, M., Bayram, A., & Gündüz, O. (2017). Assessment of seasonal and spatial variations of physicochemical parameters and trace elements along a heavily polluted effluent-dominated stream. Environ Monit Assess, 189(11), 1–16. https://doi.org/10.1007/s10661–017–6309–4
  • 16. Khalid, R. A., Patrick, W. H., & Gambrels, R. P. (1978). Effect of Dissolved Oxygen on Chemical Transformations of Heavy Metals , Phosphorus , and Nitrogen in an Estuarine Sediment ”, 35, 21–35.
  • 17. Lake, T., Belal, A. A. M., El-sawy, M. A., & Dar, M. A. (2017). The effect of water quality on the distribution of macro-benthic fauna in Western Lagoon. The Egyptian Journal of Aquatic Research, 42(4), 437–448. https://doi.org/10.1016/j.ejar.2016.12.003
  • 18. Lee, S. J., Lee, E. H., & An, K. G. (2018). Lotic ecosystem health assessments using an integrated analytical approach of physical habitat, chemical water quality, and fish multi-metric health metrics. Polish Journal of Environmental Studies, 27(5), 2113–2131. https://doi.org/10.15244/pjoes/78044
  • 19. MINEN Ministry of the Environment. (2017). DS N° 004–2017-MINEN, Environmental Quality Standards for Water (EQS-Water). El Peruano, 10–19.
  • 20. Monroy, M., Maceda-Veiga, A., & de Sostoa, A. (2014). Metal concentration in water, sediment and four fish species from Lake Titicaca reveals a large-scale environmental concern. Science of the Total Environment, 487(1), 233–244. https://doi.org/10.1016/j.scitotenv.2014.03.134
  • 21. Rencher, A. C., & William, F. C. (2012). Methods of multivariate analysis: Third edition. Methods of Multivariate Analysis: Third Edition. https://doi.org/10.1002/9781118391686
  • 22. Venkatesharaju, K. (2010). Physico-chemical and bacteriological investigation on the river Cauvery of kollegal stretch in, 6(I), 50–59.
  • 23. WHO. (2003). Guidelines for safe recreational water environments, 1.
  • 24. WHO. (2006). Guidelines for Drinking-water Quality (Vol. 1).
  • 25. Wunderlin, D., Diaz, M., Amé, M., Pesce, S., Hued, A., & Bistoni, M. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia river basin (Cordoba – Argentina ), 35(12), 2881–2894.
  • 26. Yoon, J., Bhatta, K., Rastogi, G., Muduli, P. R., Do, Y., Kim, D., Ajit, K., Joo, G. (2016). Application of multivariate analysis to determine spatial and temporal changes in water quality after new channel construction in the Chilika Lagoon. Ecological Engineering, 90, 314–319. https://doi.org/10.1016/j.ecoleng.2016.01.053
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cc2d7ff-afd8-4069-9919-378fc04bfb66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.