PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fibroblast biological activity on poly(l-lactide) and poly(l-lactide-co-trimethylene carbonate)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Poly-L-lactide (PLLA) is acknowledged biocompatible polyester. However, it possesses high crystallinity/brittleness/stiffness and requires long time for complete degradation. In the current study we present data on PLTMC, a copolymer of L-lactide and trimethylene carbonate (TMC). Poly(trimethylene carbonate) (PTMC) is characterised by good mechanical properties and rapid degradation rate and for this it might possess new desired features for medical applications. During the experiments, adhesion and activity of fibroblasts cultured on PLLA and PLTMC were studied and compared during two time points of 3 and 5 days. On day 3, the number of adherent fibroblasts was compromised when fibroblasts were cultured in the presence of PLTMC but the proper adherence was recovered by day 5. The same pat-tern was observed when we evaluated some activity parameters of fibroblasts. In particular, the release of proteins and nitric oxide was studied as the increased levels of the mediators might indicate unwanted inflammatory-like condition. Overall, the results suggest that the synthesized PLTMC initially shows unwanted effects on fibroblasts but with the time these effects are abolished. Therefore PLTMC seems to represent a new material that is non-cytotoxic and compatible with the living cells.
Słowa kluczowe
Rocznik
Strony
7--10
Opis fizyczny
Bibliogr. 25 poz., wykr., zdj.
Twórcy
  • Academy of Physical Education, Faculty of Anatomy, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
  • Jagiellonian University, Department of Evolutionary Immunobiology, Institute of Zoology, Krakow, Poland
Bibliografia
  • [1] J.C. Middleton, A.J. Tipton. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21, 2000: 2335-2346.
  • [2] Y. Tokiwa, A. Jarerat. Biodegradation of poly(L-lactide). Biotechnol Lett 26, 2004:771-777.
  • [3] H. Cai, V Dave, R.A. Gross, S.P. McCarhy. Effect of physical aging, crystallinity and orientation on the enzymatic degradation of poly(lactid acid). J Polym. Sci B: Polym Phys 34, 1996: 2701-8.
  • [4] N. Ogata, G. Jimenez, H. Kawai, T. Ogihara. Structure and thermal/mechanical properties of poly(L-lactide)-clay blend. J Polym Phys 35, 1997: 389-96.
  • [5] N. Grabow, M. Schlun, K. Sternberg, N. Hakansson, S. Kramer, K.P. Schmitz. Mechanical properties of laser cut poly(L-lactide)micro-specimens: implications for stent design, manufacture, and sterilization Trans. ASME. Biomach Eng 127, 2005: 25-31.
  • [6] Y.S. Wong, S.S. Venkatraman. Recovery as a measure of oriented crystalline structure in poly(L-lactide) used as shape memory polymer. Acta Mater, 58, 2010: 49-58
  • [7] K.A. Athanasiou, G.G. Niederauer, C.M. Agrawal. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials, 17, 1996: 93-102
  • [8] L.S. Nair, C.T. Laurencin. Biodegradable polymers as biomaterials. Prog Polym Sci 32, 2007: 762-98.
  • [9] D.A. Garlota. A literature review of poly(lactid acid). J Polym Environ 9, 2001: 63-84.
  • [10] R.M. Rasal, D.E. Hirt. Toughness decrease of PLA-PHBHHx blend films upon surface-confined photopolymerization. J Biomed Mater Res Part A 88A, 2008: 1079-86.
  • [11] M. Hiljanem-Vainio, P. Varpomaa, J. Seppala, P. Tormala. Modification of poly(L-lactides) by blending: mechanical and hydrolytic behavior. Macromol Chem Phys 197, 1996: 1503-23.
  • [12] M. Nakagawa, F. Teraoka, S. Fujimoto, Y. Hamada, H Kibayashi, J. Takahaski. Improvement of cell adhesion on poly(L-lactide) by atmospheric plasma treatment. J Biomem Mater Res A 77, 2006: 112-8.
  • [13] H. Yanagida, M. Okada, M. Maruda, M. Ueki, I. Narama, S. Kitao, Y. Koyama, T. Furuzono, K. Takakuda. Cell adhesion and tissue response to hydroxyapatite nanocrystal-coated poly(L-lactid acid) fabric. J Biosci Bioeng 108, 2009: 235-43.
  • [14] J. Yang, F. Liu, S. Tu, Y. Chen, X. Luo, Z. Lu, J. Wie, S. Li. Haemo- and cytocompatibility of bioresorbable homo- and co-polymers prepared from 1,3-trimethylene carbonate, lactides, and ε-caprolactone. J Biomed Mater Res A 94, 2010a: 396-407.
  • [15] L.J. Ji, K.L. Lai, B. He, G. Wang, L.Q. Song, Y. Wu, Z.W. Gu. Study on poly(L-lactide-co-trimethylene carbonate): synthesis and cell compatibility of electrospun film. Biomed Mater 5, 2010: 1-8.
  • [16] J. Yang, F. Liu, L. Yang, S. Li. Hydrolytic and enzymatic degradation of poly(trimethylene carbonate-co-D,L-lactide) random copolymers with shape memory behavior. Eur Polym J 46, 2010b: 783-791.
  • [17] Z. Zhang, R. Kuijer, S.K. Bulstra, D.W. Grijpma, J. Feijen. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials 27, 2006: 1741-8.
  • [18] K.J. Zhu, R.W. Hendren, K. Jansen, C.G. Pitt. Synthesis, properties, and biodegradation of poly(1,3-trimethylene carbonate). Macromolecules 24, 1991: 1736-40.
  • [19] A.P. Pego, D.W. Grijpma, J. Feijen. Enhanced mechanical properties of 1,3-trimethylene carbonate polymers and networks. Polymer 44, 2003:6495-504.
  • [20] A. Neumann, T. Reske, M. Held, K. Jahnke. Comparative investigation of the biocompatibility of various silicon nitride ceramic qualities in vitro. J Mater Sci: Mat In Med 14, 2004: 1135-1140.
  • [21] P. Dobrzynski, J. Kasperczyk. Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. V. Multiblock and random copolymers of L-lactide with trimethylene carbonate obtained in copolymerizations initiated with zirconium(IV) acetyl-acetonate. J Polym Sci Part A 44, 2006: 3184-3201.
  • [22] K. Kwon, K.D. Park, S.W. Choi, S.H. Lee, E.B. Lee, J.S. Na, S.H. Kim, Y.H. Kim. Fibroblasts culture on surface-modified poly (glycolide-co-caprolactone) scaffolds for soft tissue regeneration. J Biomater Sci Polymer Edn 10, 2001: 1147-1160.
  • [23] R. Casarano, R. Bentini, V.B. Bueno, T.Lacovella, F.B.F. Monteiro, F.A.S. Iha, A. Campa, D.F.S. Petri, M. Jaffe, L.H. Catalani. Enhanced fibroblast adhesion and proliferation on electrospun fibers obtained from poly(isosorbide succinate-b-L-lactide) block copolymers. Polymer 50, 2009: 6218-6227.
  • [24] P. Pacher, J.S. Beckman, L. Liaudet. Nitric oxide and peroxynitrate in health and disease. Physiol Rev 87, 2007: 315-424.
  • [25] K. Yamasaki, H. Edington, C. McClosky, E. Tzeng, A. Lizonova, I. Kovesdi, D. Steed and T. Billiar. J Clin Invest 101, 1998: 967.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cc10ff1-b61b-43d0-a8f5-c4955c54fdd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.