Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The analyses aim to determine aerodynamic force coefficients in the case of airflow around two smooth or rough cylinders positioned at different angles to the direction of wind velocity. Such systems, for instance, may be part of a tubular water slide. The results were compared with the values of the interference coefficient of the cylinders arranged in a row included in Eurocode EN 1991 part 4. The aerodynamic forces of the cylinder systems were determined on the basis of experimental tests conducted in a wind tunnel. To verify the above results, CFD (computational fluid dynamics) simulations were prepared. An important observation is that for the angle of yaw β = 0◦, the negative component of the lift force (lateral) fy is shown, while for the other cases, the situation is opposite and the lateral force points outside the gap (upward). The second is that the results of aerodynamic drag for rough cylinders arranged in a row and calculated according to EN 1991 part 4 may be underestimated. The flow around the pair of smooth cylinders is quite different from that of the rough ones, because during the experiment the first falls into the critical flow regime, while the second has supercritical characteristics.
Rocznik
Tom
Strony
art. no. e144578
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
- Faculty of Civil Engineering, Department of Mechanics and Bridges, ul. Akademicka 5, 44-100 Gliwice, Poland
autor
- Faculty of Civil Engineering, Department of Mechanics and Bridges, ul. Akademicka 5, 44-100 Gliwice, Poland
autor
- Faculty of Civil Engineering, Department of Mechanics and Bridges, ul. Akademicka 5, 44-100 Gliwice, Poland
Bibliografia
- [1] CEN, EN 1991-1-4 Eurocode 1: Actions on structures – Part 1-4: General actions – Wind actions with National Annex. Brussels, Warszawa: CEN, PKN, 2005.
- [2] W. Jester and Y. Kallinderis, “Numerical study of incompressible flow about fixed cylinder pairs,” J. Fluids Struct., vol. 17, pp. 561–577, 2003, doi: 10.12989/was.2020.30.1.015.
- [3] C. W. Park and S.J. Lee, “Flow structure around two finite circular cylinders located in an atmospheric boundary layer: side-by-side arrangement,” J. Fluids Struct., vol. 17, pp. 1043–1058, 2003, doi: 10.12989/was.2020.30.1.015.
- [4] E. Błazik-Borowa and J. Szulej, “Interferencja aerodynamiczna walców w ustawieniu bocznym do kierunku wiatru,” Fizyka Budowli w Teorii i Praktyce, vol. 1, pp. 31–38, 2005.
- [5] D. Yeo and N. Jones, “Computational Study on 3-D Aerodynamic Characteristics of Flow around a Yawed, Inclined, Circular Cylinder,” NNSEL Report Series Report No. NSEL-027, Urbana-Champaign, 2011.
- [6] K. Gumowski, O. Olszewski, M. Poćwierz, and K. Zielonko-Jung, “Comparative analysis of numerical and experimental studies of the airflow around the sample of urban development,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 3, pp. 729–737, 2015, doi: doi: 10.1515/bpasts-2015-0084.
- [7] V.L. Nguyen and D.K. Ho, “Numerical investigation of vortex wake patterns of laminar flow around two side-by-side cylinders,” Arch. Mech. Eng., vol. 69, no. 3, pp. 541–565, 2022, doi: 10.24425/ame.2022.141517.
- [8] A. Padewska, P. Szczepaniak, and A. Wawrzynek, “Porównanie sił aerodynamicznych działających na połowę torusa i dwa walce o tej samej długości,” Modelowanie Inżynierskie, vol. 29, no. 60, pp. 52–57, 2016.
- [9] A. Padewska-Jurczak, P. Szczepaniak, and R. Walentyński, “Experimental and numerical analyses of airflow around two cylinders angled to the direction of wind,” in Lightweight Structures in Civil Engineering Contemporary Problems. Monograph from Scientific Seminar, 2022.
- [10] M. Zdravkovich, “Review of interference-induced oscillations in flow past two parallel circular cylinders in various arrangements,” J. Wind Eng. Ind. Aerodyn., vol. 28, pp. 183–199, 1988, doi: 10.1016/0167-6105(88)90115-8.
- [11] A. Padewska, “Pogłębiona analiza numeryczna oddziaływania wiatru na obiekty budowlane o nietypowym kształcie i układzie,” Silesian University of Technology, 2016.
- [12] M. Coutanceau and J.-R. Defaye, “Circular Cylinder Wake Configurations: A Flow Visualization Survey,” Appl. Mech. Rev., vol. 44, no. 6, pp. 255–305, 1991, doi: 10.1115/1.3119504.
- [13] J. Anderson, Computational Fluid Dynamics. The basics with applications. USA: McGraw-Hill, Inc., 1995.
- [14] ANSYS Inc., “ANSYS Documentation for Release 15/Customer Training Material.” ANSYS Inc., USA, 2013.
- [15] T. Jiyuan, H. Guan, and L. Chaoqun, Computational Fluid Dynamics. A Practical Approach. USA: Elsevier Inc., 2008.
- [16] H. Versteeg and W. Malalasekera, An Introduction to computational fluid dynamics: the finite volume method. Pearson Education Ltd., 2007.
- [17] D. Wilcox, Turbulence modelling for CFD. USA: DCW Industries, 2006.
- [18] K. Suga, T.J. Craft, and H. Iacovides, “Extending an Analytical Wall-Function for Turbulent Flows Over Rough Walls,” Eng. Turbul. Model. Exp., vol. 6, pp. 157–166, 2005.
- [19] D. Li, Q. Yang, X. Ma, and G. Dai, “Free Surface Characteristics of Flow around Two Side-by-Side Circular Cylinders,” J. Mar. Sci. Eng., vol. 6, no. 3, p. 75, 2018, doi: 10.3390/jmse6030075.
- [20] J.A. Żurański, “Wpływ interferencji aerodynamicznej na obciążenie wiatrem stalowych kominów wieloprzewodowych – Aerodynamic interference effects on wind loads of multi-flue steel chimneys,” Prace Instytutu Techniki Budowlanej, vol. 2–3, pp. 37–64, 2000.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cc0347e-ec5b-4058-b0c6-5386d65d67f4