Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The drilling-related geomechanics requires a better understanding of the encountered formation properties such as poroelastic parameters. This paper shows set of laboratory results of the dynamic Young’s modulus, Poisson’s ratio, and Biot’s coef fcient for dry and water-saturated Istebna sandstone samples under a series of confning pressure conditions at two diferent temperatures. The predicted results from Wyllie’s equation were compared to the measured ones in order to show the efect of saturation on the rock weakening. A negative correlation has been identifed between Poisson’s ratio, Biot’s coefcient and confning pressure, while a positive correlation between confning pressure and Young’s modulus. The predicted dynamic poroelastic rock properties using the P-wave value from Wyllie’s equation are diferent from measured ones. It shows the important infuence of water saturation on rock strength, which is confrmed by unconfned compressive strength measurement. Linear equations have been ftted for the laboratory data and are useful for the analysis of coupled stress and pore pressure efects in geomechanical problems. Such results are useful for many drilling applications especially in evaluation of such cases as wellbore instability and many other drilling problems.
Wydawca
Czasopismo
Rocznik
Tom
Strony
673--680
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
autor
- Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, Kraków, Poland
autor
- Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, Kraków, Poland
Bibliografia
- 1. Ahmed MA, Hegab OA, Sabry A (2016) Early detection enhancement of the kick and near-balance drilling using mud logging warning sign. Egypt J Basic Appl Sci 3:85–93. https://doi.org/10.1016/j.ejbas.2015.09.006
- 2. Alexeyev A, Ostadhassan M, Mohammed RA, et al (2017) Well log based geomechanical and petrophysical analysis of the bakken formation. In: 51st US Rock mechanics/geomechanics symposium. American Rock Mechanics Association
- 3. Bailin W (2001) Boit’s effective stress coefficient evaluation: static and dynamic approaches. In: ISRM international symposium-2nd Asian rock mechanics symposium. International Society for Rock Mechanics and Rock Engineering
- 4. Baoping L, Jinan T, Hongjian L et al (2005) Structure and infrared emissivity of polyimide/mesoporous silica composite films. J Solid State Chem 178:650–654. https://doi.org/10.1016/j.jssc.2004.12.010
- 5. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164. https://doi.org/10.1063/1.1712886
- 6. Burtanówna J, Konior K, Książkiewicz M (1937) Carte géologique des Karpates de Silésie
- 7. Ciccotti M, Mulargia F (2004) Differences between static and dynamic elastic moduli of a typical seismogenic rock. Geophys J Int 157:474–477. https://doi.org/10.1111/j.1365-246X.2004.02213.x
- 8. Collins RE, Jordan JK (1961) Porosity and permeability distribution of sedimentary rocks. SPE-212-MS 29
- 9. Detournay E, Cheng AH-D (1993) Fundamentals of poroelasticity. In: Analysis and design methods. Elsevier, pp 113–171
- 10. Fjær E (2009) Static and dynamic moduli of a weak sandstone. Geophysics 74:103–112. https://doi.org/10.1190/1.3052113
- 11. Franquet JA, Abass HH (1999) Experimental evaluation of Biot’s poroelastic parameter Three different methods. In: Vail Rocks 1999, The 37th US symposium on rock mechanics (USRMS). American Rock Mechanics Association
- 12. Geroch S (1960) Microfaunal assemblages from the Cretaceous and Palaeogene Silesian unit in the Beskid Slaski Mts. Western Carpathians Biuletyn Instytutu Geologicznego 153:7–138
- 13. Grzebyk J (2006) New data on heavy minerals from the Upper Cretaceous-Paleogene flysch of the Beskid Œl1ski Mts. (Polish Carpathians). 15
- 14. Guo J, Liu Y (2014) A comprehensive model for simulating fracturing fluid leakoff in natural fractures. J Nat Gas Sci Eng 21:977–985. https://doi.org/10.1016/j.jngse.2014.10.020
- 15. Gurevich B, Makarynska D, Pervukhina M (2009) Ultrasonic moduli for fluid-saturated rocks: Mavko-Jizba relations rederived and generalized. Geophysics 74:N25–N30. https://doi.org/10.1190/1.3123802
- 16. King MS (1969) Static and dynamic elastic moduli of rocks under pressure. In: The 11th US symposium on rock mechanics (USRMS). American Rock Mechanics Association
- 17. King MS (1983) Static and dynamic elastic properties of rocks from the Canadian Shield. Intl J of Rock Mech Min Sci Geomech Abs 20:237–241
- 18. Knez D (2014) Stress state analysis in aspect of wellbore drilling direction. Arch Min Sci 59:71–76. https://doi.org/10.2478/amsc-2014-0005
- 19. Knez D, Calicki A (2018) Looking for a new source of natural proppants in Poland. Bull Pol Acad Sci Tech Sci 1:2. https://doi.org/10.24425/119052
- 20. Knez D, Mazur S (2019) Simulation of fracture conductivity changes due to proppant composition and stress cycles. Inżynieria Mineralna 21:
- 21. Knez D, Wiśniowski R, Owusu WA (2019) Turning filling material into proppant for coalbed methane in Poland—Crush test results. Energies 12:1820. https://doi.org/10.3390/en12091820
- 22. Książkiewicz M (1951) Explanations to the general geological map of Poland 1: 50,000. Wadowice Sheet 1–272
- 23. Lexa J, Bezák V, cko ME, et al (2000) Geological map of Western Carpathians and adjacent areas 1: 500 000. Geological Survey of Slovak Republic, Bratislava
- 24. Li Q, Aguilera R, Cinco Ley H (2019) A Correlation for Estimating Biot Coefficient. In: SPE Western Regional Meeting. Society of Petroleum Engineers, San Jose, California, USA
- 25. Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook, 2nd edn. Cambridge University Press, Cambridge
- 26. Messori A, Volonté G, Figoni A, Pellegrino A (2019) Experimental procedures for the evaluation of Biot’s coefficient of low porosity carbonates. In: Offshore Mediterranean Conference 11
- 27. Paterson MS, Wong T (2005) Experimental rock deformation-the brittle field. Springer, Berlin
- 28. Qadrouh AN, Carcione JM, Ba J et al (2018) Backus and Wyllie averages for seismic attenuation. Pure Appl Geophys 175:165–170
- 29. Quosay AA, Knez D (2016) Sensitivity analysis on fracturing pressure using Monte Carlo simulation technique. Oil Gas European Magazine 42(3):140-144
- 30. Quosay AA, Knez D, Ziaja J (2020) Hydraulic fracturing: New uncertainty based modeling approach for process design using Monte Carlo simulation technique. PLOS ONE. https://doi.org/10.1371/journal.pone.0236726
- 31. Rajaoalison H, Knez D, Zlotkowski A (2019) Changes of dynamic mechanical properties of brine-saturated Istebna sandstone under action of temperature and stress. Przem Chem 98:801–804. https://doi.org/10.15199/62.2019.5.22
- 32. Rajaoalison H, Zlotkowski A, Rambolamanana G (2020) Mechanical properties of sandstone using non-destructive method. J Min Inst 241:113–117. https://doi.org/10.31897/PMI.2020.1.113
- 33. Rao M, Lakshmi KP, Sarma LP, Chary KB (2006) Elastic properties of granulite facies rocks of Mahabalipuram, Tamil Nadu, India. J Earth Syst Sci 115:673–683. https://doi.org/10.1007/s12040-006-0005-z
- 34. Shakoor A, Barefield EH (2009) Relationship between unconfined compressive strength and degree of saturation for selected sandstones. Environ Eng Geosci 15:29–40. https://doi.org/10.2113/gseegeosci.15.1.29
- 35. Sone H, Zoback MD (2013) Mechanical properties of shale-gas reservoir rocks—Part 1: static and dynamic elastic properties and anisotropy. Geophysics 78:D381–D392. https://doi.org/10.1190/geo2013-0050.1
- 36. Starzec K, Waśkowska A, Golonka J et al (2018) Rocky sandstone landforms in Istebna, Silesian Beskid (Outer Carpathians, Poland). Geotourism/Geoturystyka. https://doi.org/10.7494/geotour.2018.52-53.2
- 37. Strzeboński P (2005) Cohesive debrites of the Istebna Beds (Upper Senonian–Paleocene) west of the Skawa River. Kwart 31:201–224
- 38. Strzeboński P, Kowal-Kasprzyk J, Olszewska B (2017) Exotic clasts, debris flow deposits and their significance for reconstruction of the Istebna Formation (Late Cretaceous – Paleocene, Silesian Basin, Outer Carpathians). Geol Carpath 68:562–582. https://doi.org/10.1515/geoca-2017-0037
- 39. Szydło A, Słodkowska B, Nescieruk P, Strzeboński P (2015) Microfossils from the Istebna beds: implications for stratigraphy and depositional environment. In: 16th Czech-Slovak-Polish Palaeontol. Conf. and 10th Polish micropalaeontol. workshop, pp 74–75
- 40. Terzaghi K (1936) Stress distribution in dry and in saturated sand above a yielding trap-door. Intl Conf Soil Mech Proc I:307–311
- 41. Timoshenko SP, Goodier JN (1934) Theory of elasticity. MaGraW․ Hill Inc, New York
- 42. Vallejo LE, Welsh Jr RA, Robinson MK (1989) Correlation between unconfined compressive and point load strengths for Appalachian rocks. In: The 30th US symposium on rock mechanics (USRMS). American Rock Mechanics Association
- 43. Vernik L (1994) Predicting lithology and transport properties from acoustic velocities based on petrophysical classification of siliciclastics. Geophysics 59:420–427
- 44. Weger RJ, Baechle GT, Masaferro JL, Eberli GP (2004) Effects of porestructure on sonic velocity in carbonates. In: SEG Technical Program Expanded Abstracts 2004. Society of Exploration Geophysicists, pp 1774–1777
- 45. Wyllie MRJ, Gregory AR, Gardner GHF (1958) An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics 23:459–493. https://doi.org/10.1190/1.1438493
- 46. Wyllie MRJ, Gregory AR, Gardner LW (1956) Elastic wave velocities in heterogeneous and porous media. Geophysics 21:41–70. https://doi.org/10.1190/1.1438217
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cbfd60e-6b31-4410-95bc-78d3dc6162b8