PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stable carbon and nitrogen isotopes and elemental composition and origin of organic matter from the Neogene Euphrates, Injana and Dibdibba formations in Iraq : discrimination between marine and terrestrial environments

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three Neogene sedimentary formations reflecting different depositional environments have been investigated for the purpose of diagnosing the isotopic source of the sedimentary organic matter and their palaeoenvironmental significance in discriminating between marine and terrestrial environments. One of these formations is composed of carbonate and marl of a shallow-marine environment (Euphrates Formation), and the other formations are composed of a clastic terrestrial (fluviatile) deposits with some differences in the depositional conditions (Injana and Dibdibba formations). The isotopic δ<sup>13</sup>C%, δ<sup>15</sup>N% values, organic carbon (OC) and total nitrogen contents, and atomic C/N ratios are used as evidence of depositional environment. Average δ<sup>13</sup>C values (in ‰) for the Dibdiba, Injana and Euphrates formations are –25.4, –25.7 and –24.5, respectively; average δ<sup>15</sup>N values (in ‰) are 4.44, 5.24 and 7.24 and average OC (in wt.%) is 0.13, 0.3 and 1.1, respectively. A significant variation in the stable carbon and nitrogen isotope compositions between fluvial and marine deposits was recorded. The δ<sup13</sup>C, δ<sup>15</sup>N and C/N values indicate that the organic matter in the Euphrates Formation is of marine origin, whereas it is of terrestrial origin (fluviatile) in the Injana and Dibdibba formations. The C/Natomic values are mostly high in the Injana (37) and Dibddiba formations (51), suggesting greater input and/or preservation of terrestrial organic matter derived from land plants; the shallow-marine environment (Euphrates Formation) was characterized by a low C/N ratio (9) due to the algal-derived organic matter with limited input of terrestrial organic matter.
Rocznik
Strony
729–--736
Opis fizyczny
Bibliogr. 51poz., tab., wykr.
Twórcy
autor
  • Univer sity of Baghdad, Department of Geology, College of Science, P.O. Box 47182, Baghdad, Iraq
Bibliografia
  • 1. Al-Ankaz, Z.S.A., 2012. Mineralogy, geochemistry and provenance of Dibdibba Format ion, south and middle of Iraq. Unpublished M.Sc. thesis, University of Baghdad, College of Science, Department of Geology.
  • 2. Al-Bassam, K.S., 1984. Economic Geology of Iraq. Final Report on the Regional Geological Survey of Iraq, 5. GEOSURV, Baght dad.
  • 3. Al-Dabbas, M.A., Awadh, S.A., Abed Zaid, A., 2013. Facies analysis and geochemistry of the Euphrates Formation in Central Iraq. Arabian Journal of Geosciences, DOI 10. 1007/s 12517-013-0932-3
  • 4. Al-Ghreri, M.F., 1985. Biostratigraphy of the Euphrates Limestone Formation in the Euphrates Valley. Unpublished M.Sc. thesis, College of cience, University of Baghdad.
  • 5. Al-Hashimi, H.A., Amer, R.M., 1985. Tertiary microfacies of Iraq. D.G., Geological Survey and Mineral Investigation, Baghdad.
  • 6. Al-Juboury, A.I., 2009. The Upper Miocene Injana (Upper Fars) Formation of Iraq: insights on provenance history. Arabian Journal of Geosciences, 2: 337-364.
  • 7. Al-Rawi, Y., Sadik, J.M., 1981. Sedimentology of the Dibdibba Clasticformation, Iraq. Journal of Geological Society of Iraq, 14: 55-69.
  • 8. Andrews, J.E., Greenaway, A.M., Dennis, P.F., 1998. Combined carbon isotope and C/N ratios as indicators of source and fate of organic matter in a poorly flushed, tropical estuary: Hunts Bay, Kingston Harbour, Jamaica. Estuarine, Coastal and Shelf Science, 46: 743-756.
  • 9. Awadh, S.M., Aboud, Z.S., Eisa, M.J., 2013. Chem i cal and physical control processes on the development of caves in the Injana Formation, Central Iraq. Arabian Journal of Geosciences, 6: 3765-3772.
  • 10. Bellen, R.C., van, Dunnington, H.V., Wetzel, R., Morton, D., 1959. Lexique stratigraphique internal Asie, Iraq. International Geological Congress. Commission on Stratigraphy, 3, Fasc. 10a.
  • 11. Berner, R.A., Canfield, D.E., 1989.A new model for atmospheric oxygen over Phanerozoic time. American Journal of Science, 289: 333-361.
  • 12. Buday, T., 1980.Stratigraphy and Paleogeography. In: The Regional Geology of Iraq (eds. I.M. Kassab and S.Z. Jassim), 1. Geological Survey and Mineral Investigation, Baghdad.
  • 13. Buday, T., Jassim, S.Z., 1987. The Regional Geology of Iraq, 2. Tectonism, Magmatism and Metamorphism. GEOSURV, Baghdad.
  • 14. Burdige, D.J., 2007. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chemical Reviews, 107: 467-485.
  • 15. Coplen, T.B., 2011. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Communications in Mass Spectrometry, 25: 2538-2560.
  • 16. Cytroky, P., Karim, S.A., 1971. Stratigraphy and Paleontology of the Oligocene and Miocene strata near Anah, Euphrates Valley. NIMCO Report No. CZ 140, SOM. Library, Baghdad.
  • 17. Eadie, B.J., Chambers, R.L., Gardner, W.S., Bell, G.L., 1984. Sediment trap studies in Lake Michigan: resuspension and chemical fluxes in the southern basin. Journal of Great Lakes Research, 10: 307-321.
  • 18. Ertel, J.R., Hedges, J.l., 1985. Sources of sedimentary humic substances: vascuiar plant debris. Geochimica et Cosmochimica Acta, 49: 2097-2107.
  • 19. Gayara, A.D., Taha, L.S., 1989. Microfacies analysis of the Euphrates Limestone Formation, Northern Iraq. Journal of Geological Society of Iraq, 22: 123-129.
  • 20. Hassan, K.M., Al-Khateeb, A.A.G., Khlaif, H.O., Kadhum, M.A., Saeed, F.S., 2002. Detailed geological survey for mineral exploration in Karbala-Najaf area. Part 1, Geology. GEOSURV, int. rep. no. 2874.
  • 21. Heaton, T.H.E., 1999. Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: implications for palaeodiet studies. Journal of Archaeological Science, 26: 637-649.
  • 22. Hedges, J.I., Mann, D.C., 1979. The lignin geochemistry of marine sediments from the southern Washington coast. Geochimica et Cosmochimica Acta, 43: 1809-1818.
  • 23. Hesslein, R.H., Capel, M.D., Fox, D.E., Hallard, K.A., 1992. Stable isotopes of sulfur, carbon and nitrogen as indicators of trophic level and fish migration in the lower MacKenzie River Basin, Canada. Canadian Bulletin of Fisheries and Aquatic Sciences, 48: 2258-2265.
  • 24. Hu, J., Peng, P., Jia, G., Mai, B., Zhang, G., 2006. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China. Marine Chemistry, 98: 274-285.
  • 25. Jasper, J.P., Gagosian, R.B., 1993.The relationship between sedimentary organic carbon isotopic composition and organic biomarker com pound con centration. Geochimica et Cosmochimica Acta, 57: 167-186.
  • 26. Jassim, S.Z., Goff, J.C., eds., 2006. Geology of Iraq. Dolin, Prague and Moravian Museum, Brno.
  • 27. Jassim, S.Z.,Karim, S.A., 1984. Tectonic Framework. Report on the Regional Geological Survey of Iraq, 2. GEOSURV, Baght dad.
  • 28. Keil, R.G., Tsamakis, E., Fuh, C.B., Giddings, J.C., Hedges, J.I., 1994. Mineralogical and textural controls on organic composition of coastal marine sediments: hydrodynamic separation using SPLITT fractionation. Geochimica et Cosmochimica Acta, 57: 879-893.
  • 29. Keil, R.G., Tsamakis, E., Giddings, J.C., Hedges, J.I., 1998. Biochemical distributions (amino acids, neutral sugars and lignin phenols) among size-classes of modern marine sediments from the Washington Coast. Geochimica et Cosmochimica Acta, 62: 1347-1364.
  • 30. Maksymowska, D., Richard, P., Piekarek-Jankowska, H., Riera, P., 2000. Chemical and isotopic composition of the organic matter sources in the Gulf of Gdansk (Southern Baltic Sea). Estuarine, Coastal and Shelf Science, 51: 585-598.
  • 31. Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114: 289-302.
  • 32. Meyers, P.A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27: 213-250.
  • 33. Mukhopadhyay, A., Al-Sulaimi, J., Al-Awadi, E., Al-Ruwaih, F., 1995. An overview of the Tertiary geology and hydrogeology of the northern part of the Arabian Gulf region with special reference to Kuwait. Earth-Science Reviews, 40: 259-295.
  • 34. Muller, A., Voss, M., 1999. The palaeoenvironments of coastal lagoons in the southern Baltic Sea: II. S13C and S15N ratios of organic matter-sources and sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 145: 17-32.
  • 35. Naidu, A.S., Cooper, L.W., Finney, B.P., Macdonald, R.W., Alexander, C., Semiletov, I.P., 2000. Organic carbon isotope ratios (S13C) of Arctic Amerasian Continental shelf sediments. International Journal of Earth Sciences, 89: 522-532.
  • 36. Peterson, B., Howarth, R.W., 1987. Sulfur, carbon and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia. Limnology Oceanography, 32: 1195-1213.
  • 37. Peterson, B.J., Fry, B., 1987. Stable Isotopes in Ecosystem Studies. Annual Review of Ecology and Systematics, 18: 293-320.
  • 38. Powers, R.W., Ramirez, L.F., Redmond, C.D., Elberg, E.L., 1966. Sedimentary geology of Saudi Arabia. USGS Professional Paper, 560-D.
  • 39. Prahl, F.G., Bennett, J.T., Carpenter, R., 1980. The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay, Washington. Geochimica et Cosmochimica Acta, 44: 1967-1976.
  • 40. Prahl, F.G., Ertel, J.R., Gon M.A., Sparrow, M.A., Eversmeyer, B., 1994. Terrestrial organic carbon contributions to sediments on the Washington margin. Geochimica et Cosmochimica Acta, 58: 3035-3048.
  • 41. Prazak, J., 1974. Stratigraphy and Paleontology of the Miocene of the Western Desert, Western Iraq. NIMCO Report. SOM Library.
  • 42. Premuzic, E.T., Benkovitz, C.M., Gaffney, J.S., Walsh, J.J., 1982. The nature and distribution of organic matter in the surface sediments of world oceans and seas. Organic Geochemistry, 4: 63-77.
  • 43. Sigman, D.M., Altabet, M.A., Mccorkle, D.C., Francois, R., Fischer, G., 2000. The S15N of nitrate in the Southern Ocean: Nitrogen cycle and circulation in the ocean interior. Journal of Geophysical Research, 105: 19599-19614.
  • 44. Stein, R., Macdonald, R.W., eds., 2004.The Organic Carbon Cycle in the Arctic Ocean. Springer, Berlin.
  • 45. Sweeney, R.E., Liu, K.K., Kaplan, I.R., 1978. Oceanic nitrogen isotopes and their use in determining the source of sedimentary nitrogen. New Zealand. Department of Scientific and Industrial Research Bulletin, 20: 9-26.
  • 46. Takahashi, K., Yoshioka, T., Wada, E., Sakamoto, M., 1990. Tempotal variations in carbon isotope ratio of phytoplankton in a eutrophic lake. Journal of Plankton Research, 12: 799-808.
  • 47. Tiessen, H., Stewart, J.W.B., Cole, C.V., 1984. Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Science Society of America Journal, 48: 853-858.
  • 48. Wada, E., 1980. Nitrogen isotope fractionation and its significance in biogeochemical processes occurring in marine environments. In: Isotope Marine Chemistry (eds. E.D. Goldberg, Y. Horibe and K. Saruhashi): 375-398. Uchida Rokakuho, Tokyo.
  • 49. Wada, E., Terazaki, M., Kabaya, Y., Nemoto, T., 1987. 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep-Sea Research, 34: 829-841.
  • 50. Wada, E., Kabaya, Y., Kurihara, Y., 1993. Stable isotopic structure of aquatic ecosystems. Journal of Biological Sciences, 18: 483-499.
  • 51. Youkhanna, A.K., 1971. Sedimentary of the Euphrates Formation in Central and Northern Iraq. Unpublished. M.Sc. thesis, College of Science, University of Baghdad.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cbfb064-280a-4d01-ab28-8394d68ec8d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.