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Abstract:
Localiza on in an unknown environment is one of the
major issues faced by autonomous vehicles. The solu on
to this problem is delivered by the Simultaneous Local-
iza on and Mapping techniques, commonly known as
SLAM. SLAM is the category of algorithms allowing a
robot tomap the surroundings and to keep an es mate of
its posi on. Nowadays several SLAMmethods are widely
used. Though, many issues arise when SLAM is applied
in a complex and unstructured environment. This ar cle
details an implementa on of SLAM using improved Ex-
tended Kalman Filter (EKF). The aim is to provide a simple
but reliable SLAM technique. The work has been carried
out on a robot Seekur Jr, the mapping has been realized
with a laser scanner. The applied EKFmodelwith itsmodi-
fica ons is presented. The techniques used to observe the
environment and to iden fy the landmarks are outlined.
The robustness and consistency of introduced modifica-
ons were jus fied by experiments.

Keywords:mobile robot, SLAM, environment recogni on

1. Introduc on
1.1. Historical Context

It is often considered that the irst publication
about SLAM has been made by Durrant-Whyte and
Leonard in 1991 [3]. Among the different possible
methods of SLAM, the so-called stochastic mapping
methods became very popular despite their heavy
computational cost. They have been introduced by
Smith, Self and Cheeseman in 1987 [15]. These meth-
ods rely on a probabilistic approach. They act upon
strong theoretical basis and integrate many pro itable
concepts, this results in a good quality SLAM. The pop-
ular ones are the techniques using EKF based SLAMor
theparticle ilter basedSLAM.TheEKFmethod ismost
widely used because its algorithm is simple and has
relatively lowcomputational cost. For the same reason
the EKF based SLAM was considered in our study.
1.2. State of the Art of the EKF-based SLAM

There are many publications devoted to SLAM, the
presented solutions depends on utilized sensors and
on applied environment recognition and robot local-
ization techniques. Here after are few examples. In pa-
per [2] the vision based SLAM method is discussed,
it is based on an estimated global map where a robot
inds the path to the user de ined goal. Publication [1]
presents ef icient method for building the 3D model
of environment basis on 2D LIDAR information for the

purpose of SLAM. In many SLAM applications EKF is
utilized however it is not free of drawbacks. One of the
serious disadvantages is its computational complex-
ity growing unboundedwith the number of landmarks
[9]. The recent works on EKF based SLAM attempt to
improve three aspects of this technique [6, 7, 10]. The
irst point is to reduce the computational cost what
is crucial for real-time actions. The complexity of the
basic EKF based SLAM is O(𝑛 ) where 𝑛 is the size
of the map. Some techniques like the Divide and Con-
quer SLAM [11] reduce it to O(𝑛). The second point is
to optimize the data association for the recognition of
the features of the environment. This point is critical
because a single mismatch in association can cause a
complete failure. The different methods available are
generally trying to match several features at a time
(batch validation) or to ind patterns (especially visual
signatures for visual SLAM). Then the third point is the
consistencyof robot localization. It is the ability toper-
form large trajectory loops in unknown areas while
keeping all positions consistently estimated. Namely,
the Hierarchical SLAM [4] is very consistent. Within
this context, the purpose of our work is to deliver an
EKF based SLAM solution for complex indoor envi-
ronment. In basic EKF based SLAM algorithm some
modi ications coming from the nature of the consid-
ered landmarks and the environment were applied. It
was aimed to obtain a satisfying technique, in terms of
computational cost, data association and consistency.
We consider the environment recognition using the
laser scanner and the robot odometry basis on data
delivered bywheel encoders and gyroscope. The robot
positioning andmapping is performed concurrently in
the real-time.

1.3. Problem Statement

SLAM is the problem faced by a robot in an un-
known environment without absolute knowledge of
its position. In such a situation, the robot has an esti-
mation of its position provided by odometry but the
error of this measure is increasing constantly dur-
ing the movement. SLAM is a method combining the
odometry’s estimation and observations of the envi-
ronment to keep the position error bounded.

Our purpose is to implement an accurate and ro-
bust SLAMmethod based on EKF [7,12], on a Seekur Jr
robot. This work deals at the same timewith the theo-
retical and the practical aspects of the problem. First it
is necessary to master the localization and the recog-
nition of the landmarks. Then models of the odome-
try and of themeasurement have to be built. The over-
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all method should naturally discard the disturbances
from the environment and the noise of the measure-
ments. The environment considered here is a labora-
tory classroom, it is a realistic and complex environ-
ment, with many obstacles like chairs, tables, equip-
ment or people.

Fig. 1. The Seekur Jr from Adept MobileRobots [8]

The Seekur Jr (Fig.1) is one of the newest robots
from the companyAdeptMobileRobots. It is dedicated
to research and surveillance applications. Its overall
kinematics can be approximated by the simple unicy-
cle model.

The Seekur Jr has an odometry system relying on
encoders on the wheel axis and a gyroscope. The gy-
roscope’s measurement is merged with the encoders’
data to have an optimized estimation of the position at
every instant. This systemprovides position andhead-
ing measurement. This is the source of the odometry
readings for the SLAM. Then a laser scanner is used to
observe the environment. This sensor has the advan-
tage to be accurate and fast. All sensory readings, from
laser scanner and from odometry, are obtained every
100 ms (default period on this robot).
1.4. Main Steps

The EKF based SLAM relies on a mathematical
model embedding the kinematics of the robot and the
odometry’s capabilities. Thismodel is used for predic-
tion of the future positionwith the current odometry’s
measurements. It is often called prediction model.
Here it consists of the kinematic model, approximated
by the unicycle model, and of an estimation of the
odometry errors.

The environment is observed through some land-
marks, other objects being ignored (feature based
SLAM). The choice of the sensors and the type of land-
marks used to observe and describe the environment
is decisive for the overall SLAM process [13]. The cho-
sen landmarksmust be observable, recognizable, easy
to observe and stationary. It appears that the best
landmarks for the environment considered are the
walls of the room and more generally every large ver-
tical plane surface. They have all the qualities already
mentioned. The walls appear as straight lines to the
laser scanner. The step in SLAM which corresponds
to the identi ication of a landmark from the sensory
readings is called landmark extraction. The sensory
reading from the laser scanner is a set of points in po-
lar coordinates. First, it is necessary to obtain their

Cartesian coordinates. Then the segments eventually
formed by these points are identi ied as landmarks.

Fig. 2. Representa on of landmarks

The landmarks will be treated as mathematical
lines, supposedly in inite. The representation adopted
for the map considers the initial position of the robot
as the origin. Then the lines are represented by the
projection of the origin on themselves. In this way,
each landmark is represented by one single point in
the map (Fig.2). For a meaningful map, the end points
of the landmarks must be approximated but they are
not used for localization purposes.

Fig. 3. Main steps in SLAM

The next step in SLAM is the data association. It is
the most critical step in the process. Considering an
observation of landmark from the landmark extrac-
tion, the data association has to identify whether a
known landmark has been re-observed or whether a
new landmark has been found. The data association
tries tomatch the current observationwith the known
landmarks and if an observation does not match any
landmark it is considered as a new landmark. Taking
this into account, the EKF considers the re-observed
landmark and updates the position and the map ac-
cordingly, or the EKF adds the new landmark to the
map. The overall process is represented by the scheme
shown in Fig.3.

2. Applied Solu on
2.1. Iden fica on of the Landmarks

The extraction of the landmarks and the data asso-
ciation are not complex but theymust be realizedwith
great care because the result strongly affects SLAM
quality. In this study, it has been chosen to use few
landmarks but very reliable ones. Therefore a harsh
iltering process is used at all stages from the laser
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scanner reading to the acceptation of a landmark in
the EKF state.

Initially, the laser scanner reading provides a set
of points observed, in polar coordinates. In order to
be processed, these points are converted to the Carte-
sian frame of the mobile robot. Then the line recogni-
tion algorithm identi ies the line segments taking into
account the obtained set of points. The RANSAC algo-
rithm [5], simple and ef icient, is a reasonable choice.
This step belongs to the line extraction action men-
tioned in section 1.4.

The irst iltering is applied here – only the lines
satisfying a set of criteria are considered further. In
thiswork, it has beendecided to keep lines longer than
40 cm, with at least 6 points, with a maximal distance
of a point to the line of 3 cm and a maximum average
distance of the points to the line of 2 cm. These crite-
ria have been chosen considering that the most reli-
able elements in a indoor environment are the walls
and the furniture. The minimum length of 40 cm en-
sures that only these objects will be used to create
landmarks, moving objects like human legs or chair
legs are discarded. Only the lines of at least 6 aligned
points are used because legs of chairs and table can
create illusions of lines with 3 or 4 points aligned.
Then the 2 last constraints mean that the point must
be very well aligned, the line must be neat. This con-
iguration is convenient for themeasurement justi ica-
tion because it reduces the overall set of possible land-
marks to the few very reliable landmarks. The length
condition of the lines’ segments and the requirement
for minimum 6 points makes the landmarks localiza-
tion precise. The main drawback of such choice is that
some areas might not have observable landmarks be-
cause of blocked ield of view, for example too many
chairs or tables can hide the sight of the wall. Such sit-
uations occurred in our work, an introduced solution
is described in section 2.3.

Fig. 4. Valida on gate

In data association all newobserved candidates for
the line are analyzed one by one. The algorithm tries
tomatch a line candidatewith every known landmark.
If a line does not match any landmark, it is considered
as a potentially new landmark. The matching decision
is issued by the so called validation gate. The valida-
tion gate considers the distance between the newly
observed landmark and an already known landmark.
If this distance is smaller than a given threshold, the

match is valid otherwise it is not (Fig.4) and a new
line (new landmark) is created. The innovation 𝑣 is
the difference between the observation realized and
the expected position of the landmark (from the EKF),
it can be computed for every pair line-landmark. In
our case, the innovation is a 2 elements vector with
the quantities representing difference in the distance
from the robot to the lines, and the difference in an-
gle between the lines. 𝑆 given by the EKF (explained
in section 2.2) is the innovation covariance matrix, it
is computed for every landmark. Known from litera-
ture, the validation gate takes into account the value
of𝑣 𝑆 𝑣. The boundary value equal to 9.0 de ines the
range that contains themeasurement with a probabil-
ity of 98.9% [17]. A line is considered as matching if it
ful ills the inequality. This validation gate has the ad-
vantage to adapt the criterion to the uncertainties of
the measure.

𝑆 : innovation covariance matrix
𝑣 : innovation
𝑣 𝑆 𝑣 < 9

(1)

This validation gate considers the theoretical in i-
nite lines. If an observed line matches a landmark, it is
necessary to check that the segments are also compat-
ible and not only aligned. The segments are compati-
ble if the observed segment is partly coinciding with
the segment of the landmark. If the observed segment
satis ies the validation gate without having a part co-
inciding with the landmark, it is considered as a new
landmark (which is probably aligned with the irst
one). This situation happens often indoors. In order to
make the distinction, one must keep an estimation of
the end points of the landmarks and update it every
time the data association is performed.

Fig. 5. Common landmarks in a 16 m×7 m room (map
made by experiment)
points : laser scanner’s observa ons
lines : SLAM landmarks

Every time a line is detected as a potential new
landmark, it is safe to keep it in an intermediate state
which is used for the data association but not includ-
ing it yet in the Kalman ilter. Such a landmark would
be included in the EKF only if it is observed often
enough in a short time period. In this work, relying on
tests, we concluded that it must be at least observed
5 times (in the same place) over 15 iterations, other-
wise it is deleted. The irst practical aspect of this is
that the robot must have a probability of 5/15 = 33%
to observe the landmarkwhen it is near : it checks that
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the landmark is not affected by noise and is not hid-
den by obstacles. This means that the observation is
repeatable. The second aspect is that the displacement
of the landmark during 5 time steps (100ms) must be
below thematching criterion (8 cm and 1.25∘). There-
fore, with respect to a ixed frame, the linear speed of
the landmark must be below 16 cm/s and its angular
speed below 2.5∘/s. So the landmark can be consid-
ered as ixed. These 2 points make sure that the SLAM
discards irrelevant landmarks.

Fig. 6. Environment observa on process

Thanks to what is explained above, the landmarks
are only the most reliable elements (walls and fur-
niture). Most of all, legs of tables, chairs and per-
sons standing are discarded (because they do not con-
tain straight lines). Moving objects are also discarded
(opening doors, animals, other robots). The method
can be executed in an of ice or a home environment
without needing any special care or requirement. The
Fig.5 illustrates which elements of a room are com-
monly extracted as landmarks. The Fig.6 displays the
overall observation process.
2.2. Models for EKF

The EKF is the element of the method which real-
izes the fusion of the odometry’s data and the observa-
tions resulting from the process described in section
2.1. It considers the landmarks as in inite lines, each
line representedby apoint (Fig.2). The state of the sys-
tem consists in the position of the robot (𝑥, 𝑦, 𝜃) and
the positions of the landmarks (𝑥 , 𝑦 ). At every iter-
ation, the EKF computes the state and its covariance
matrix. The covariance matrix holds the information
about the uncertainty of every state component and
also the correlations between components. Namely
the ith diagonal term of the matrix is the square of the
estimated standard deviation of the ith element of the
state. Let𝑋 be the state and𝑃 its covariancematrix. Let
𝑛 be the number of landmarks included in the state.

Whenever an odometry measurement is released,
the EKF has to compute 𝑋 and 𝑃 , the parts of 𝑋 and
𝑃 related to the robot’s position ( irst 3 components):

Fig. 7. State variables

this is the prediction step. Let 𝐴 be the Jacobian ma-
trix of the prediction model. The prediction model is
represented by the function 𝑓 delivering the expected
state at the next iteration according to the kinematic
model. The explicit argument of 𝑓 is the current state,
the current linear and angular speeds are also argu-
ments of this function. 𝐴 is the Jacobian matrix of 𝑓. In
our notation the derivative is denoted by 𝑑.

𝑋 , ≈ 𝑓(𝑋 , )
𝐴 = ( ( , ))

( , )
(2)

Let 𝑄 be the covariance matrix of the odometry’s
errors. The prediction step is globally de ined by the
set of equations (3).

𝑋 , = 𝑋 , + Δ𝑋
𝑃 , = 𝐴𝑃 , 𝐴 + 𝑄 (3)

Then the correlations with the landmarks also
have to be updated. Let 𝑃 | be the 3×2 block of corre-
lation matrix between the robot and the ith landmark.

𝑃 | , = 𝐴𝑃 | ,
𝑃 | , = 𝑃 | ,

(4)

In order to obtain the best performance for the
SLAM, these updates have to be done adequately with
the actual behavior of the robot and its odometry. The
unicycle model leads to the de inition of matrix 𝐴 (5).

𝐴 = 𝑑(𝑓(𝑋 , ))
𝑑(𝑋 , )

=
1 0 −Δ𝑦
0 1 Δ𝑥
0 0 1

(5)

The matrix Q in equations (3) represents the
odometry errors and the un-modeled phenomena. Of-
ten only 2 kinds of inaccuracies are considered. There
is the position (𝑥, 𝑦) error increasing proportionally to
the linear speed. Let 𝑞 be its standard deviation per
unit of displacement. Another is the heading (𝜃) error
increasing proportionally to the angular speed. Let 𝑞
be its standard deviation per unit of rotation. The ex-
perimental observations with the Seekur Jr led to the
addition of a third error in our implementation. It is
the heading error increasing proportionally to the lin-
ear speed. Let 𝑞 | be its standard deviation per unit of
displacement. Introducing this additional error allows
more realistic estimation of the robot performance. It
seems that this uncommon kind of error is more im-
portant because the Seekur Jr is a skid-steering robot.
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When the odometry delivers the displacement of
(Δ𝑥, Δ𝑦) and rotation of Δ𝜃 data, the equation (6) pro-
vides the de inition of 𝑄 with the values used in this
work. These values result from the robot features in-
cluding frequency of the odometry readings. The pa-
rameters 𝑞 were obtained experimentally. The global
standarddeviations (square roots of the 3 irst compo-
nents of the diagonal of𝑄) were obtained after several
realizations of a same experiment (for example going
straight forward for 20 m or rotating 10 times on its
own). Then the 𝑞 parameters (𝑞 , 𝑞 ) were cal-
culated from the global standard deviations. Matrix 𝑄
(6) provides good estimation of the uncertainties over
short displacements but it is less accurate for larger
displacements.

𝑞 = 0.018
𝑞 = 0.05
𝑞 | = 0.0045∘/𝑚𝑚

Δ𝑡 = Δ𝑥 + Δ𝑦
𝑄 =
(𝑞 Δ𝑥) 𝑞 Δ𝑥Δ𝑦 𝑞 𝑞 Δ𝑥Δ𝜃 + 𝑞 | 𝑞 Δ𝑥Δ𝑡

⋯ (𝑞 Δ𝑦) 𝑞 𝑞 Δ𝑦Δ𝜃 + 𝑞 | 𝑞 Δ𝑦Δ𝑡
symmetric ⋯ (𝑞 Δ𝜃) + (𝑞 | Δ𝑡)

(6)
The EKF must also consider how to initialize and

how to update the landmarks. This relies on the way
the robot observes the landmarks and the accuracy of
the measurement. The landmarks are considered as
unlimited lines. Let 𝜌 and 𝛼 be the range and bearing
from the robot to the projection of the robot on the
landmark. In this section the observation of a line will
always be expressed in such terms of a range andbear-
ing.

The coordinates (𝑥 , 𝑦 ) refer to the representative
point of the landmark (Fig.2). This point is convenient
to deal with the line but it is has no physical meaning
and can not be used directly. The points, 𝑂, 𝑃 and 𝑃
stand for the origin, the robot and the landmark. The
reference frame is still de ined by the initial position
of the robot. The couple (𝜌, 𝛼) is expressed by (7).

𝜌 = ( ) ( )

𝛼 = atan2(𝑦 , 𝑥 ) − 𝜃
(7)

Let introduce𝑠, the side indicator, 𝑠 is equal to 1
when𝑂 and𝑃 are on the same side of the line and−1
otherwise:

𝑠 = sign(𝑥 + 𝑦 − 𝑥 𝑥 − 𝑦 𝑦 ) (8)

Let𝜌 denote the distance𝑂𝑃 ,𝐻, the Jacobianma-
trix of themeasurement is given by (9).When only the
ith landmark is observed only the columns1,2,3,2+2𝑖
and 3 + 2𝑖 are non zero. 𝐻 is the key matrix in the
measurements’ model, it holds the information about
relation between the state variables and the measure-

ments.

𝐻 = ( , )
( )

𝐻 =
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−𝑠 0
−𝑠 0
0 −1
0 0
⋮ ⋮
0 0

𝑠 −
𝑠

0 0
⋮ ⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

↦ line 2 + 2𝑖

(9)
The coordinates of 𝑃 are expressed by formula

(10):

𝐶 = cos(𝜃 + 𝛼)
𝑆 = sin(𝜃 + 𝛼)
𝑥 = 𝑥 𝐶 + 𝑦 𝐶𝑆 + 𝑠𝜌𝐶
𝑦 = 𝑥 𝐶𝑆 + 𝑦 𝑆 + 𝑠𝜌𝑆

(10)

From the derivation of (10), 𝐽 and 𝐽 are ob-
tained:

𝐽 = ( , )
( ) =

𝐶 𝐶𝑆 −𝑦 − 2𝑥 𝐶𝑆 + 2𝑦 𝐶 − 𝑠𝜌𝑆
𝐶𝑆 𝑆 −𝑥 + 2𝑥 𝐶 + 2𝑦 𝐶𝑆 + 𝑠𝜌𝐶

𝐽 = ( , )
( , )

= 𝑠𝐶 −𝑦 − 2𝑥 𝐶𝑆 + 2𝑦 𝐶 − 𝑠𝜌𝑆
𝑠𝑆 −𝑥 + 2𝑥 𝐶 + 2𝑦 𝐶𝑆 + 𝑠𝜌𝐶

(11)
These matrices are used for the initialization step,

when a new landmark is found. At the initialization
step the state𝑋 is expanded adding the positionwhere
the new landmark has been observed. Then the P is ex-
panded adding 2 components: they are described by
(12). This implementation considers the use of a com-
plete P matrix (and not only its blocks). It has the ad-
vantage to allow the obtained landmark observation
to introducemodi ication of the correlated landmarks.
Due to that, this implementation does not any explicit
feedback loop. However it results in bigger computa-
tion load – especiallywith plenty of landmarks. There-
fore it might require a sub-mapping strategy [14] de-
creasing the calculations load.

𝑃 | = 𝐽 𝑃 𝐽 + 𝐽 𝑅𝐽
𝑃 | = 𝑃 | = 𝑃 𝐽
∀𝑖 ≤ 𝑛 − 1, 𝑃 | = 𝑃 | = 𝐽 𝑃 |

(12)

The update step of the SLAM is realized when a
landmark is re-observed. The innovation 𝑣 (difference
between the observation and expected landmark po-
sition) is here considered. The matrix 𝑅 representing
the measurement error in terms of range and bearing
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is also applied. 𝑅 is given by (13). It is important to
consider the uncertainty due to motion of the robot
and due to laser scanner synchronization inaccuracy.
So (𝑞 , 𝑞 ), the standard deviations of the measure-
ment concerning the range and bearing, must be esti-
mated experimentally, and if possible when the robot
is in motion. Those quantities correspond to the accu-
racy in line extraction and the repeatability of the laser
scanner positioning.

𝑞 = 80 𝑚𝑚
𝑞 = 1.25∘

𝑅 = 𝑞 0
0 𝑞

(13)

The full update step is describedby (14). It updates
the state and its covariance using𝐾 – the Kalman gain.
Note that 𝑆 is the innovation covariance matrix given
by (1). 𝑆 sums up the uncertainties of the robot’s po-
sition and the landmark’s position expressed in terms
of range and bearing, and adds the uncertainty of the
measurement.

𝑆 = 𝐻𝑃𝐻 + 𝑅
𝐾 = 𝑃𝐻 𝑆

𝑋 = 𝑋 + 𝐾𝑣
𝑃 = (1− 𝐾𝐻)𝑃

(14)

2.3. Addi onal Improvements

The implementation with all the elements men-
tioned so far was leading to a successful mapping of
areas with many landmarks, like the area on the right
side of the map Fig.5. Though, in areas with fewer
landmarks, the behavior was often diverging. This
concerned, for example, the left side of themap shown
in Fig.5. One of the hypothesis of the EKF based SLAM,
is that the landmarks are equally distributed. This is
not always true, especially when the robot is acting
in not specially arranged environment like that one
shown in Fig.5. Two novel modi ications have been in-
troduced in our work extending the EKF method for
managing such situations.

The unstable situation in EKF based SLAM occurs
due to the large variations of the uncertainties in the
robot’s position. The validation gate (inequality (1))
used in the data association is lexible. It considers a
larger possible innovation when the uncertainties are
high. Therefore the data association naturally adapts
itself to the variations of uncertainty. But it relies on
the EKF estimations. When the robot’s position is un-
certain, the EKF is very sensitive and the estimated po-
sitionmight be signi icantly affectedby the landmarks.
The area considered in the right side of the map Fig.5
contains only 2 landmarks.When the robot is focusing
on this side, the EKF is strongly relying on those land-
marks, especially if they are observed for the irst time,
due to the positioning errors, they can give a wrong
reference for the whole procedure. We proposed a so-
lution to this issue.

The idea is to detect such ”dangerous” situation
and to reduce the impact of observations of such land-
marks. A dangerous landmark should be initialized

and correlated with the others during irst few obser-
vations and then it has tobeprogressively ignoredpre-
venting anydamageof theEKF state. The idea is topre-
vent the dangerous landmarks to affect the EKF by the
addition of a gain 𝛾 in the computation of the Kalman
gain (15). 𝛾 is different for every landmark. This has
been inspired by [6] discussing the problem of missed
observations what is theoretically equivalent to our
problem (some landmarks are observed too often and
the others are absent).

𝐾 = 𝛾𝑃𝐻 𝑆 (15)
It has been observed that the problems occurs

when the uncertainty of an observed landmark is
much bigger that the uncertainty in the robot position.
If the robot moves around such landmarks, their un-
certainties are progressively decreasing, but the robot
position and other landmarks’ estimated position is
negatively affected. In fact, the landmark uncertain-
ties should not decrease because the robot’s position
is still uncertain; the observations are not bringing re-
liable information. To detect such situation a ratio𝜑 is
introduced and computed at every observation.

𝐶 is a covariance matrix which is sum of the
uncertainties of the robot’s position, the uncertain-
ties of the measurement, and a minimal level of ac-
ceptable uncertainty of the landmark’s position. This
minimal level of acceptable uncertainty is de ined as
a fraction of 𝑅 (term (𝛽 − 1)𝑅 in (16)) it expresses
the uncertainty of well known landmark. Thanks to
𝐻, the Jacobian matrix of the measurement, these un-
certainties are expressedwith respect to themeasure-
ment. 𝐶 represents the minimum uncertainty in
an observation, obtained when the landmark’s posi-
tion is very well known. 𝐶 is a covariance ma-
trix which represents the uncertainties in the land-
mark’s position, expressed with respect to the mea-
surement. Finally 𝜑 is de ined as the ratio of the trace
of 𝐶 𝑅 over the trace of 𝐶 𝑅 (16).The
multiplication by 𝑅 is used to allow the addition of
the uncertainties in range andbearing, both expressed
by the covariancematrices.𝜑 increaseswhen the land-
mark’s position is uncertain and when the robot’s po-
sition is certain.

𝛽 = 2

𝐶 = 𝐻 𝑃 | 𝐻
𝐶 = 𝐻 𝑃 | 𝐻 + 𝛽𝑅

𝜑 = Tr( )
Tr( )

(16)

It has been considered that the minimum level of
uncertainty reachable for a landmark is𝑅 itself. There-
fore, according to its de inition, 𝛽 is equal to 2. Then it
has been decided that, the uncertainties of the land-
mark and the uncertainties of the robot must become
as low as 𝑅. So 𝐶 ≈ 𝑅 and 𝐶 ≈ (1 + 𝛽)𝑅
then𝜑 ≈ 1/3. This reasoning gave the threshold value
𝜑 = 1/3. If 𝜑 > 𝜑 , the landmark
is considered dangerous. During experiments it was
detected that the criterion is rather conservative, it
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tends to consider many recent landmarks as danger-
ous, therefore 𝜑 must be slightly increased in
order to select only the most dif icult situations. With
this modi ication our innovation gives good results.

Initially 𝛾 is equal to 1 for every landmark. The ra-
tio 𝜑 is computed after every landmark’s observation
once the update step is completed. For every danger-
ous landmark 𝛾 is decreased by a certain amount. In
our study 𝛾 was decreased by 0.35. When 𝛾 reaches 0
it is locked for 5 s, every new dangerous observation
of this landmark resets the time counter. When a land-
mark is not considered dangerous, its 𝛾 is increased
in each step by small amount, for example 0.05. By
this way the dangerous landmarks are progressively
ignored and remain ignored until they disappear from
a sight. After some time, they can be used again.

The result of the additionof this element in theEKF
based SLAM is such:
- The new landmarks are not trusted immediately.

- The correlation between landmarks is more impor-
tant during the exploration.

- The SLAM can stay stable longer without observa-
tions of previously known landmarks (better consis-
tency).

- The complexity is not increased.

- The time needed to fully explore an area is slightly
increased.

Due to the assumption about regularly spaced
landmarks, the EKF based SLAM ignores another situ-
ation. The validation gate (Fig.4) uses a criterionbased
on the distance between the landmarks to distinguish
them. This distance is compared with the uncertain-
ties of the measurement, landmarks’ positions and
robot’s position. When the uncertainties of the mea-
surement are larger than the distance between 2 land-
marks, the landmarks can be confused. This can cause
severe damage to the SLAM process. Several tech-
niques of data association, like the joint compatibility
test [16], allow to reduce the risk of confusion. Though,
in complex environments, the risk of data association
error can not be fully eliminated. Instead of avoiding
the confusion, the approach proposed in this paper
tries to minimize the damageable effect of an associ-
ation mistake. The method applied in this work relies
in an elimination of the possible causes of confusions.
It is done every 10 iterations (every 1 s). The valida-
tion gate is applied to all couples of landmarks which
are likely to be observed (currently near to the robot).
If 2 of such landmarks match together, it means that
there is a danger of confusion. The SLAMcould not dis-
tinguish these landmarks, therefore it is unsafe to keep
both of them. The newest landmark is deleted. The un-
certainty of the remaining landmark is increased by
the distance between the 2 former landmarks. The ad-
dition (17) is performed on 𝑃 – the part of the matrix

𝑃 related to this landmark.

(Δ , Δ ) : distance between the representative points
of the landmarks along x and y

𝑃 , = 𝑃 , + Δ Δ Δ
Δ Δ Δ

(17)
This additional element acts like a local adjust-

ment of the map resolution. In special situations with
few landmarks, it maintains the covariance bound to a
level of uncertainty which is actually reachable. In the
beginning of the mapping, several landmarks can be
ignored and only the main elements are placed on the
map. Then, when an area starts to be better known,
the uncertainty of the robot’s position decreases and
it allowsmapping the details of the environment. Such
approach has good stabilizing effect but it should not
beused toooften (it hasbeenobservedexperimentally
that it can cause a slight positioning drift).

The results are:
- The possibly confusing situations are secured.
- The behavior with high level of uncertainty is safe
(when combined with the irst additional module
suggested).

- Data association mistakes causing the creation of
new landmarks insteadof re-observationof a known
landmark are solved.

- Exploration is realized progressively, irst a general
map is built, then the details are added.

- Using this module too often will cause all uncertain-
ties remaining on high level, this can cause an even-
tual slight drift of the map.

3. Results
3.1. Performance

In order to prove the ef iciency, the described tech-
niques have been implemented on a Seekur Jr robot.
A test has been run in a classroom. The room was
not tidy, there were many chairs and tables, and there
were some persons walking. The robot was manually
driven making loops at medium speed, the SLAM was
active. Each experiment lasted 6 minutes.

Fig.8 shows a photo of the room and its map. This
map is superposition of the referencemap and the de-
tected landmarks. The reference map shows the room
planwith furniture elements. The landmarks found by
SLAM are shown as obtained in the end of the experi-
ment. Thepoint (0,0) is the initial positionof the robot.
In ideal condition, the reference map and the detected
landmarks coincide.

The superposition of reference and detected maps
show that the landmarks are all relevant and each of
them represents a signi icant element in the room. At
least a section of each wall is represented by a land-
mark. Several elements or sections of walls were ig-
nored either because they were too short or because
they were hidden behind obstacles. The irrelevant el-
ements have been iltered and all of the reliable ele-
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Fig. 8. Experiment on Seekur Jr:
a – room where the experiment took place.
b –posi on of the landmarks a er explora on las ng 6
min.
The actual posi on of the walls and furniture is shown
as the reference.

ments were used for the SLAM. The landmark extrac-
tion, data association and iltering was ef icient.

The reference and the landmarks coincide well.
The average mapping accuracy was 10 cm.

Fig. 9. Covariance bounds during the experiment

Fig.9 shows the 2𝜎 covariance bound of the esti-
mated robot’s position, heading and the landmarks’
position (averaged) during the experiment. It pro-
vides information of how the EKF is certain of the
value.

These graphs show that the covariance bounds do
not diverge and the average bound of the landmarks
is slowly decreasing. It means that the SLAM is stable
and the EKF is more and more con ident in the land-
marks. It can be observed that, locally, the covariance
bounds of the position and the heading have some
peak values. This happens when the robot explores
not well known areas. In this case, the SLAM is less
certain about the robot’s position. An effect of the ad-

dition of the gain 𝛾 (described in 2.3) is that, that the
local peaks are higher afterwards the bound decreases
more quickly to its previous level. The consistency is
increased but the exploration is slower.

The graphs in ig.9 show that the inal value for
the 2𝜎 bounds are 12 cm for the position estimate,
2.2∘ for the heading estimate and 21 cm for the land-
marks’ positions estimates. The proof obtained by
measurements showed that the robot localization er-
ror is about±10𝑐𝑚 and±1∘ of heading. The estimated
position accuracy is not far from what has been mea-
sured. It proves that the kinematic model of the robot
(matrices (5) and (6)) is good and embeds properly
the important factors.

During our experiments, the maximal computa-
tional time was 20 ms to perform landmarks’ extrac-
tion, data association, prediction and update. It was
with 25 landmarks in the state of the EKF and 3 land-
marks observed at once. Therefore it can be concluded
that the calculations time of the program is rather
short, the algorithm is ef icient.

3.2. SLAM Tes ng Using the Simula on

Besides of the experiments on the Seekur Jr, a
simulation method has been used to test the SLAM
method with the modi ications we introduced. The
simulation was found to be very useful because it al-
lowed to test our algorithmwith an ideal settings,with
all elements fully mastered. This gave the opportu-
nity to test more deeply our algorithm. The simulator
MobileSim provided by Adept MobileRobots has been
used for simulations.

Fig. 10. Simulated room and trajectory of the robot

Fig.10 displays the virtual room considered in sim-
ulation. It shows also the trajectory followed by the
virtual robot. Point 1 and point 2 in the trajectory are
marking 2 situations that will be investigated later.
The simulation lasted 2 minutes. The simulation con-
sidered the disturbances model matching the features
observed in real conditions with the Seekur Jr con-
cerning the laser measurements and the odometry re-
sults. The simulated experiment considered the same
situation as in the actual experiment, the same SLAM
program was used and with the same parameters. In
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simulated room was 1 obstacle (in the middle) block-
ing the sight of the laser scanner.

Fig. 11. Error and covariance bound during the
simula on

The graphs in ig.11 display the actual localization
error and the2𝜎 covarianceboundsof estimated robot
position. The actual error is obtained from the sim-
ulator. Even if this result is less meaningful than the
experiment, it is worth to notice that the error re-
mains below 2𝜎 bound (except one very short time
period for 𝑦 coordinate). So the EKF provides good es-
timation. The robot made twice the loop around the
central obstacle. When the robot was behind this ob-
stacle it loosed the sight of its irst landmarks, this
caused a progressive increase of the position’s covari-
ance bound. When the robot passed the obstacle for
the second time, the covariance bound increase was
lower because the SLAM already knew these land-
marks (the gain 𝛾 described in section 2.3 was equal
to 1).

Fig. 12. Landmarks when the robot is at point 1

The igure 12 shows the landmarks identi ied by
SLAM algorithm when the virtual robot reaches the
point 1 (see on ig.10). For the reference the actual
position of the walls is also shown. It can be noticed
that the largest part of the identi ied landmarks co-

incides well with the real ones. Only the wall in up-
per part of drawing does not fully coincide with the
landmarks. This is due to the fact that, in this wall,
there is one section located 50 cm ahead of the rest
of the wall. Because of that the wall should be repre-
sented by three landmarkswhile it is represented only
by one landmark on the map in igure 12. The selec-
tion of only one landmark was controlled by our al-
gorithm. Analyzing together the graphs in ig.11 and
robot trajectory ( ig.10) we learnt that before reach-
ing point 1, the inaccuracy in robot’s position estimate
increases. Therefore, according to the technique ex-
plained in section 2.3, the SLAM was prevented from
creating three landmarks for the upper wall. Creating
three landmarks brings the risk of confusion between
them. Therefore instead, the upperwall is represented
by one landmark only, making a kind of compromise.
This situation happened only once in this simulated
environment but it is a common situation which hap-
pened much often in real experiments. Despite of the
small inaccuracies possibly caused by the landmarks
reduction the overall performance of algorithm can be
concluded as being good, with decreased possibility of
landmarks confusion.

Fig. 13. Landmarks when the robot is at point 2

The igure 13 displays the map of the landmarks
when the robot reaches point number 2. Then, the up-
per wall is represented by three distinct landmarks.
The landmarks coincide well with the reference but
the end points of the segments are mistaken. The dis-
tinction of the three landmarks is possible at this point
because since passing the point 1 robot is in a known
environment. So the estimated positioning error is
smaller, therefore, the mapping can use a lower res-
olution (technique described in section 2.3). Then the
irst landmark is kept and the other two landmarks are
added to comply with the new sections of observed
walls. However, as it has been explained in section 2.1,
it is not considered that the segment’s size can be re-
duced. So the end points are not accurately placed.
This is not a problem for robot localization but creates
a limit for mapping purposes.

66



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N∘ 2 2014

4. Conclusions
This paper presented a Kalman Filter based SLAM

method. The method has been adapted to perform
better in complex environment and it was tested on
a skid-steering robot. The method succeeded to per-
form the SLAM in a complex environment, without be-
ing obstructed by common obstacles like chairs, ta-
bles and people. The method was implemented in the
Seekur Jr robot. Tested mapping and the localization
performance was found enough accurate. The algo-
rithm is fast to execute. With the improvements, the
algorithm is also consistent enough to achieve the sat-
isfactory SLAM while the robot is moving along short
loops, like those tested in the experiment and in the
simulation. The method is consistent, fast and accu-
rate while it is also rather simple. However for gen-
eral exploration the method is slightly slow and not
all landmarks can not be directly used for mapping
purposes (due to the landmarks reduction the seg-
ments end points are not always accurate as it was ex-
plained).

The purpose of this work was to investigate the
SLAM only in a single laboratory rooms but not out-
door. In order to extend this to larger areas, it would
be needed to combine our method with more com-
plex techniques like the Hierarchical SLAM [4]. This
will improve the consistency of landmarks positioning
with distributing the computational cost. Elaborated
control program was suf icient for presented experi-
ments, however for practical applications the failure
recovery technique would be necessary to make sure
that the SLAMremains stablewith consistent informa-
tion for long periods of time and over a long distances.
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