PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Życie towarzyszące naturalnym, powierzchniowym wyciekom węglowodorów

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Life at natural hydrocarbon seeps
Języki publikacji
PL
Abstrakty
PL
Swobodne migracje węglowodorów związane są z ciągłym rozpraszaniem tych związków ze stref ich nagromadzeń i zachodzą w warunkach silnej erozji skał uszczelniających oraz wysokiej porowatości skał zbiornikowych. Opisywane zjawiska występują zarówno w środowisku morskim, jak i lądowym, przyjmując różne formy. Morskie wypływy, zwane zimnymi wysiękami (ang. cold seeps), występują m.in. w postaci powierzchniowych wycieków gazu i/lub ropy, jezior solankowych, wulkanów asfaltowych oraz błotnych. Z kolei na lądzie migracje ujawniają się jako jeziora ropy, smoliste, naskalne naloty bitumiczne, przesiąknięta ropą gleba, wycieki gazowe oraz wulkany błotne. Uważa się, że prawie każdy basen naftowy zawiera obecnie tysiące aktywnych wycieków ropy. Blisko 50% ropy przedostającej się do mórz i oceanów ma pochodzenie nieantropogeniczne. Pomimo toksyczności niektórych węglowodorów chronicznie skażone miejsca zasiedlane są przez różnorodne grupy organizmów, począwszy od prostych jednokomórkowych bakterii po złożone organizmy wyższe. Bakterie stanowią kluczowy element umożliwiający funkcjonowanie takich ekosystemów. W tym aspekcie olbrzymie znaczenie mają zdolności metaboliczne niektórych bakterii ukierunkowane na węglowodory, gdyż umożliwiają one całkowitą mineralizację tych substancji lub przekształcenie ich w produkty charakteryzujące się mniejszą toksycznością. W środowisku morskim procesy te w większości zachodzą w warunkach beztlenowych, zaś w środowisku lądowym większą wagę należy przypisać procesom tlenowym. Wydaje się, że zależności symbiotyczne z takimi mikroorganizmami dla organizmów wyższych są niezwykle cenne, ponieważ umożliwiają im zajmowanie tych ekstremalnych środowisk. W przypadku morskich wycieków należy również zwrócić uwagę na bakterie chemosyntetyzujące, które wykorzystując metan oraz siarkowodór, wytwarzają substancje odżywcze (węglowodany) na potrzeby organizmu gospodarza, np. małży z rodzin Lucinidae, Mytilidae, Solemyidae, Thyasiridae, Vesicomyidae. W niniejszym artykule starano się przedstawić złożoność i niezwykłość różnorodnych form życia, które występują w środowisku długotrwale skażonym substancjami ropopochodnymi
EN
Natural hydrocarbon migration means permanent hydrocarbon dispersion from their accumulation zones. These compounds escape along permeable migration pathways, or across them through fractures and faults in the cap rock, or directly from an outcrop of oilbearing rock. Hydrocarbon seepages occur both in marine and terrestrial environments, but in various forms. Marine seepages, termed as cold seeps, may appear as gas bubbles, oil plums, brine pools and basins, as well as asphalt or mud volcanoes. In turn, terrestrial seeps may manifest as lakes of crude oil, tarry, rocky bituminous deposits, oil soaked soil, gas seeps and mud volcanoes. It is believed that almost every oil basin has thousand active oil seeps. Almost 50% of crude oil entering seas and oceans has non-anthropogenic origins. In spite of some hydrocarbon toxicity, permanently oil-exposed sites are habitats of diverse groups of organisms; from unicellular bacteria to more complex, higher organisms. Bacteria are the key players for the proper functioning of ecosystems connected with hydrocarbon seeps. In this context, bacterial metabolic capabilities towards some hydrocarbons are of great importance since microorganisms may totally mineralize or transform these substances to less toxic products. In the marine seeps these processes occur under anaerobic conditions, while aerobic hydrocarbon conversion is more important in terrestrial environments. The symbiosis with such microbes seems to be valuable for higher organisms, as it allows them to occupy such extreme environments. In case of marine seeps, attention should be also paid to chemosynthetic bacteria that use methane or hydrogen sulfide to produce nutrients (carbohydrates) for host organism i.e. bivalve families such as Lucinidae, Mytilidae, Solemyidae, Thyasiridae, Vesicomyidae. In this article, we tried to present the complexity, biodiversity and uniqueness of various life forms which exist in the chronically hydrocarbon-contaminated environment.
Czasopismo
Rocznik
Strony
641--656
Opis fizyczny
Bibliogr. 71 poz., rys., tab.
Twórcy
  • Instytut Nafty i Gazu – Państwowy Instytut Badawczy
  • Instytut Nafty i Gazu – Państwowy Instytut Badawczy
Bibliografia
  • Babadi M.F., Mehrabi B., Tassi F., Cabassi J., Vaselli O., Shakeri A., Pecchioni E., Venturi S., Zelenski M., Chaplygin I., 2019. Origin of fluids discharged from mud volcanoes in SE Iran. Marine and Petroleum Geology, 106: 180–205. DOI: 10.1016/j.marpetgeo.2019.05.005.
  • Baciu C., Caracausi A., Etiope G., Italiano F., 2007. Mud volcanoes and methane seeps in Romania: main feature and gas flux. Annals of Geophysics, 50: 501–512. DOI: 10.4401/ag-4435.
  • Bergquist D.C., Ward T., Cordes E.E., McNelis T., Howlett S., Kosoff R., Hourdez S., Carney R., Fisher C.R., 2003. Community structure of vestimentiferan-generated habitat island form Gulf of Mexico cold seeps. Journal of Experimental Marine Biology and Ecology,289: 197–222. DOI: 10.1016/S0022-0981(03)00046-7.
  • Bhagobaty R.H., 2020. Hydrocarbon-utilizing bacteria of natural crude oil seepages, Digboi oil field, northeastern region of India. Journal of Sedimentary Environments, 5: 177–185. DOI: 10.1007/s43217-020-00013-8.
  • Clarke R.H., Cleverly R.W., 1991. Petroleum seepage and post-accumulation migration. [W:] Fleet A.J. (ed.) Petroleum migration. Geological Society Special Publication. England, London, 59: 265–271. DOI: 10.1144/GSL.SP.1991.059.01.17.
  • Coleman J., Baker C., Cooper C.K., Fingas M., Hunt G., Kven-volden K.A., Michel K., Michel J., McDowell J., Phinney P., Rabalais N.,
  • Roesner L., Spies R.B., 2003. Oil in the sea III: Inputs, fates, and effects. National Research Council. National Academies Press, Washington: 1–277. DOI: 10.17226/10388.
  • Copley J.T.P., Young C.M., 2006. Seasonality and zonation in the reproductive biology and population structure of the shrimp Alvinocaris stactophila (Caridea: Alvinocarididae) at a Louisiana slope cold seep. Marine Ecology Progress Series, 315: 199–209. DOI: 10.3354/meps315199.
  • Cordes E.E., Bergquist D.C., Fisher C.R., 2009. Macro-ecology of Gulf of Mexico cold seeps. Annual Review of Marine Science, 1: 143–168 DOI: 10.1146/annurev.marine.010908.163912.
  • Cordes E.E., Bergquist D.C., Redding M.L., Fisher C.R., 2007. Patterns of growth in cold-seep vestimenferans including Seepiophila jonesi: a second species of long-lived tubeworm. Marine Ecology, 28: 160–168. DOI: 10.1111/j.1439-0485.2006.00112.x.
  • Crombie A., Murrell J., 2014. Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature, 510: 148–151. DOI: 10.1038/nature13192.
  • Dattagupta S., Martin J., Shu-min L., Carney R.S., Fisher C.R., 2007. Deep-sea hydrocarbon seep gastropod Bathynerita naticoidea responds to cues from the habitat-providing mussel Bathynerita childressi. Marine Ecology, 28: 193–198. DOI: 10.1111/j.1439-0485.2006.00130.x.
  • Duperron S., Nadalig T., Caprais J.C., Sibuet M., Fiala-Médioni A., Amann R., Dubilier N., 2005. Dual symbiosis in a Bathy-modiolus sp. mussel form a methane seep on the Gabon Continental Margin (Southeast Atlantic): 16S rRNA phylogeny and distribution of the symbionts in gills. Applied and Environmental Microbiology, 71: 1694–1700. DOI: 10.1128/AEM.71.4.1694-1700.2005.
  • Etiope G., 2015. Natural gas seepage. Oil Seeps. [W:] Etiope G (ed.). The Earth’s hydrocarbon degassing. Springer, Cham, Heidelberg: 22–23. DOI: 10.1007/978-3-319-14601-0.
  • Etiope G., Ciotoli G., Schwietzke S., Schoell M., 2019. Gridded maps of geological methane emissions and their isotopic signature. Earth System Science Data, 11: 1–22. DOI: 10.5194/essd-11-1-2019.
  • Evtushenko N.V., Ivanov A.Y., 2013. Oil seeps in the southeastern Black Sea studied using satellite synthetic aperture radar images. Izvestiya, Atmospheric and Oceanic Physics, 49: 913–918. DOI: 10.1134/S0001433813090065.
  • Farahan Ul Haque M., Crombie A.T., Murrell J.C., 2019. Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps. Microbiome, 7: 134. DOI: 10.1186/s40168-019-0741-3.
  • Froelich P.N., Klinkhammer G.P., Bender M.L., Luedtke N.A., Heath G.R., Cullen D., Dauphin P., Hammond D., Hartman B., Maynard V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43: 1075–1090. DOI: 10.1016/0016-7037(79)90095-4.
  • Fujikura K., Yamanaka T., Sumida P.Y.G., Bernardino A.F., Pereira O.S., Kanehara T., Nagano Y., Nakayama C.R., Il N.M., Pellizari V.H., Shigeno S., Yoshida T., Zhang J., Kita-zato H., 2017. Discovery of asphalt seeps in the deep Southwest Atlantic off Brazil. Deep Sea Research Part II: Topical Studies in Oceanography, 146: 35–44. DOI: 10.1016/j.dsr2.2017.04.002.
  • Gao Y., Cheng Z., Ling W., Huang J., 2010. Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots. Bioresource Technology, 101: 6895–6901. DOI: 10.1016/j.biortech.2010.03.122.
  • Gao Y., Li Q., Ling W., Zhu X., 2011. Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. Journal of Hazardous Materials, 185: 703–709. DOI: 10.1016/j.jhazmat.2010.09.076.
  • Hamamura N., Olson S.H., Ward D.M., Inskeep W.P., 2005. Diversity and functional analysis of bacteria communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park. Applied and Environmental Microbiology,71: 5943–5950. DOI: 10.1128/AEM.71.10.5943-5950.2005.
  • Head I., Jones D.M., Röling W.F.M., 2006. Marine microorganisms make a meal of oil. Nature Reviews Microbiology, 4: 173–182. DOI: 10.1038/nrmicro1348.
  • Hentati O., Lachhab R., Auadi M., Ksibi M., 2013. Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environmental Monitoring and Assessment, 183: 2989–2998. DOI: 10.1007/s10661-012-2766-y.
  • Holland C.W., Etiope G., Milkov A.V., Michelozzi E., Favali P., 2003. Mud volcanoes discovered offshore Sicily. Marine Geology, 199(1–2): 1–6. DOI: 10.1016/S0025-3227(03)00125-7.
  • Joye S.B., 2020. Biogeochemistry of hydrocarbon seeps. Annual Review of Earth and Planetary Sciences, 48: 205–231. DOI: 10.1146/annurev--earth-063016-020052.
  • Kennicutt II M.C., 2017. Oil and gas seeps in the Gulf of Mexico. [W:] Ward C. (ed.). Habitats and biota of the Gulf of Mexico: before the Deepwater Horizon oil spill. Springer, New York: 275–385.
  • Kholodov V.N., 2002. Mud volcanoes, their distribution regularities and genesis: Communication 1. Mud volcanic provinces and morphology of mud volcanoes. Lithology and Mineral Resources, 37: 197–209. DOI: 10.1023/A:1015425612749.
  • Kim T.J., Lee E.Y., Kim Y.J., Cho K.-S., Ryu H.W., 2003. Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12. World Journal of Microbiology and Biotechnology, 19: 411–417. DOI: 10.1023/A:1023998719787.
  • Kleindienst S., Knittel K., 2020. Anaerobic hydrocarbon-degrading sulfate-reducing bacteria at marine gas and oil seeps. [W:] Teske A., Carvalho V. (eds.). Marine hydrocarbon seeps. Microbiology and biogeochemistry of a global marine habitat. Springer Nature Switzerland: 21-43. DOI: 10.1007/978-3-030-34827-4_2.
  • Krastel S., Spiess V., Ivanov M., Weinrebe W., Bohrmann G., Shash-kin P., Heidersdorf F., 2003. Acoustic investigations of mud volcanoes in the Sorokin Trough, Black Sea. Geo-Marine Letters, 23: 230–238. DOI: 10.1007/s00367-003-0143-0.
  • Kuśmierek J., Machowski G., 2008. Wycieki ropy naftowej w obszarze wschodniej części Karpat polskich i ich znaczenia prognostyczne. Prace Instytutu Nafty i Gazu. 150: 247–250.
  • Kvenvolden K.A., Cooper C.K., 2003. Natural seepage of crude oil into the marine environment. Geo-Marine Letters, 23: 140–146. DOI: 10.1007/s00367-003-0135-0.
  • Lazar C.S., 2020. Archaea in Mediterranean sea cold seep sediments and brine pools. [W:] Teske A., Carvalho V. (eds.). Marine hydrocarbon seeps. Microbiology and biogeochemistry of a global marine habitat. Springer Nature Switzerland: 125–141. DOI: 10.1007/978-3-030-34827-4_6.
  • Leharne S., 2019. Transfer phenomena and interactions of non-aqueous phase liquids in soil and groundwater. ChemTexts, 5: 5. DOI: 10.1007/s40828-019-0079-2.
  • Leifer I., 2019. A synthesis review of emissions and fates for the Coal Oil Point marine hydrocarbon seep field and California marine seepage. Geofluids, 4724587. DOI: 10.1155/2019/4724587.
  • Lies A., Delteil A., Prin Y., Duponnois R., 2018. Using mycorrhiza helper microorganisms (MHM) to improve the mycorrhizal efficiency on plant growth. [W:] Meena V. (ed.). Role of rhizospheric microbes in soil. Springer, Singapore: 277–298. DOI: 10.1007/978-981-10--8402-7_11.
  • Lösekann T., Robador A., Niemann H., Knittel K., Boetius A., Dubi-lier N., 2008. Endosymbioses between bacteria and deep-sea siboglind tubeworms from an Arctic cold seep (Haakon Mosby Mud Volacano, Barents Sea). Environmental Microbiology, 10: 3237–3254.DOI: 10.1111/j.1462-2920.2008.01712.x.
  • Lumactud R., Shen S.Y., Lau M., Fulthorpe R., 2016. Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination. Frontiers in Microbiology, 7: 755. DOI: 10.3389/fmicb.2016.00755.
  • MacDonald I.R., Bohrmann G., Escobar E., Abegg F., Blanchon P., Blinova V., Brückmann W., Drews M., Eisenhauer A., Han X., Heeschen K., Meier F., Mortera C., Naehr T., Orcutt B., Bernard B., Brooks J., de Faragó M., 2004. Asphalt volcanism and chemosynthetic life in the Campeche Knolls, Gulf of Mexico. Science, 14: 999–1002. DOI: 10.1126/science.1097154.
  • MacPherson E., Segonzac M., 2005. Species of the genus Munidopsis (Crustacea, Decapoda, Galatheidae) from the deep Atlantic Ocean, including cold-seep and hydrothermal vent areas. Zootaxa, 1095: 1–60.
  • Manga M., Bonini M., 2012. Large historical eruptions at subaerial mud volcanoes, Italy. Natural Hazards and Earth System Sciences, 12:3377–3386. DOI: 10.5194/nhess-12-3377-2012.
  • Massoud M.S., Al-Abdali F., Al-Ghadban A.N., Al-Sarawi M., 1996. Bottom sediments of the Arabian Gulf-II. TPH and TOC contents as indicators of oil pollution and implications for the effect and fate of the Kuwait oil slick. Environmental Pollution, 93: 271–284. DOI: 10.1016/S0269-7491(96)00042-5.
  • Matyasik I., Leśniak G., Such P., 2015. Elementy systemu naftowego Karpat. Prace Naukowe Instytutu Nafty i Gazu – Państwowego Instytutu Badawczego, 203: 1–120.
  • Medialdea T., Somoza L., Pinheiro L.M., Fernández-Puga M.C., Vázquez J.T., León R., Ivanov M.K., Magalhaes V., Díaz-del-Río V.,Vegas R., 2009. Tectonics and mud volcano development in the Gulf of Cádiz. Marine Geology, 261: 48–63. DOI: 10.1016/j.margeo.2008.10.007.
  • Mishra V., Gupta A., Kaur P., Singh S., Singh N., Gehlot P., Singh J., 2016. Synergistic effects of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils. International Journal of Phytoremediation, 18: 697–703. DOI: 10.1080/15226514.2015.1131231.
  • Niemann H., Linke P., Knittel K., MacPherson E., Boetius A., Brückmann W., Larvik G., Wallmann K., Schacht U., Omoregie E., Hilton D., Brown K., Rheder G., 2013. Methane-carbon flow into the benthic food web at cold seeps – a case study from the Costa Rica subduction zone. PLoS ONE, 8: e74894. DOI: 10.1371/journal.pone.0074894.
  • Orłowska K., Mierzwa M., 2013. Wpływ naturalnego wycieku ropy na aktywność biologiczną gleby. Episteme, 18: 217–223.
  • Pavlova O.N., Izosimova O.N., Gorshkov A.G., Novikova A.S., Bukin S.V., Ivanov V.G., Khlystov O.M., Zemskaya T.I., 2020. Current state of deep oil seepage near Cape Gorevoi Utes (Central Baikal). Russian Geology and Geophysics, 61: 1007–1014. DOI: 10.15372/RGG2019180.
  • Pawlik M., Płociniczak T., Piotrowska-Seget Z., 2015. Bakterie endofityczne i ich znaczenie w mikrobiologii środowiskowej i przemyśle. Postępy Mikrobiologii, 54: 115–122.
  • Rajtor M., Piotrowska-Seget Z., 2016. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. Chemosphere, 162: 105–116. DOI: 10.1016/j.chemosphere.2016.07.071.
  • Remelli S., Rizzo P., Celico F., Menta C., 2020. Natural surface hydrocarbons and soil faunal biodiversity: a bioremediation perspective. Water, 12: 2358. DOI: 10.3390/w12092358.
  • Rizzo P., Malerba M., Bucci A., Sanangelantoni A.M., Remelli S., Celico F., 2020. Potential enhancement of the in-situ bioremediation of contaminated sites through the isolation and screening of bacterial strains in natural hydrocarbon springs. Water, 12: 2090. DOI: 10.3390/w12082090.
  • Rölling W.F.M., Ortega-Lucach S., Larter S.R., Head I.M., 2006. Acidophilic microbial communities associated with a natural, biodegraded hydrocarbon seepage. Journal of Applied Microbiology, 101: 290–299. DOI: 10.1111/j.1365-2672.2006.02926.x.
  • Rouphael Y., Franken P., Schneider C., Schwarz D., Giovannetti M., Agnolucci M., 2015. Arbuscular mycorrhizal fungi act as bio-stimulants in horticultural crops. Scientia Horticulturae, 196: 91–108. DOI: 10.1016/j.scienta.2015.09.002.
  • Rubin-Blum M., Antony C.P., Borowski C., Sayavedra L.,Pape T., Sahling H., Bohrmann G., Redmond M.C., Valentine D.L., Dubilier N., 2017. Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nature Microbiology,2: 17093. DOI: 10.1038/nmicrobiol.2017.93.
  • Ruff S.E., 2020. Microbial communities and metabolisms at hydrocarbon seeps. [W:] Teske A., Carvalho V. (eds.). Marine hydrocarbon seeps. Microbiology and biogeochemistry of a global marine habitat. Springer Nature Switzerland: 1–20. DOI: 10.1007/978-3-030--34827-4_1.
  • Ryszka P., Zarzyka-Ryszka M., Anielska T., Choczyński M., Turnau K., 2019. Arbuscular mycorrhizal fungi from petroleum-impacted sites in the Polish Carpathians. International Biodeterio-ration & Biodegradation, 138: 50–56. DOI: 10.1016/j.ibiod.2019.01.001.
  • Sautkin A., Talukder A.R., Comas M.C., Soto J.I., Alekseev A., 2003. Mud volcanoes in the Alboran Sea: evidence from micropaleontological and geophysical data. Marine Geology, 195: 237–261. DOI: 10.1016/S0025-3227(02)00691-6.
  • Schumacher D., 1996. Hydrocarbon-induced alteration of soils and sediments. [W:] Schumacher D., Abrams M.A. (eds.). Hydrocarbon migration and its near-surface expression. AAPG Memoir, 66: 71–89.
  • Scoma A., Yakimov M.M., Daffonchio D., Boon N., 2017. Self-healing capacity of deep-sea ecosystems affected by petroleum hydrocarbons. EMBO Reports, 18: 969–972. DOI: 10.15252/embr.201744090.
  • Shakirov R., Obzhirov A., Suess E., Salyuk A., Biebow N., 2004. Mud volcanoes and gas vents in the Okhotsk Sea area. Geo-Marine Letters, 24: 140–149. DOI: 10.1007/s00367-004-0177-y.
  • Shlimon A.G., Mansurbeg H., Othman R.S., Gittel A., Aitken C.M., Head I.M., Finster K.W., Kjeldsen K.U., 2020. Microbial community composition in crude oils and asphalts from the Kurdistan Region of Iraq. Geomicrobiology Journal, 37: 635–652. DOI: 10.1080/01490451.2020.1753131.
  • Suess E., 2014. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions. International Journal of Earth Sciences, 103: 1889–1916. DOI: 10.1007/s00531-014-1010-0.
  • Vasileva-Tonkova E., Gesheva V., 2007. Biosurfactant production by Antarctic facultative anaerobe Pantoea sp. during growth on hydrocarbons. Current Microbiology, 54: 136–141. DOI: 10.1007/s00284-006-0345-6.
  • Vigneron A., Cruaud P., Pignet P., Caprais J.C., Gayet N., Cambon-Bonavita M.A., Godfroy A., Toffin L., 2013. Bacterial communities and syntrophic associations involved in anaerobic oxidation of methane process of the Sonora Margin cold seeps, Guaymas Basin. Environmental Microbiology, 16: 2777–2790. DOI: 10.1111/1462-2920.12324.
  • Wallenius A.J., Dalcin M.P., Slomp C.P., Jetten M.S.M., 2021. Anthropogenic and environmental constraints on the microbial methane cycle in coastal sediments. Frontiers in Microbiology, 12: 631621. DOI: 10.3389/fmicb.2021.631621.
  • Xun F., Xie B., Liu S., Guo C., 2015. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environmental Science and Pollution Research, 22: 598–608. DOI: 10.1007/s11356-014-3396-4.
  • Yan Z., Zhang Y., Wu H., Yang M., Zhang H., Hao Z., Jiang H. 2017. Isolation and characterization of bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation. RSC Advances, 7: 46690–46698. DOI: 10.1039/C7RA09274A.
  • Zatyagalova V.V., Ivanov A.Y., Golubov B.N., 2007. Application of Envisat SAR imagery for mapping and estimation of natural oil seeps in the south Caspian Sea. Proceedings of the Envisat Symposium-2007 (ESA SP-636), Montreux, Switzerland.
  • Zeppilli D., Leduc D., Fontanier C., Fontaneto D., Fuchs S., Gooday A.J., Goineau A., Ingels J., Ivanenko V.N., Kristensen R.M., Neves R.C., Sanchez N., Sandulli R., Sarrazin J., Sørensen M.V., Tasiemski A., Vanreusel A., Autret M., Bourdonnay L., Claireaux M., Coquillé V., De Wever L., Rachel D., Marchant J., Toomey L., Fernandes D., 2018. Characteristics of meiofauna in extreme marine ecosystems: a review. Marine Biodiversity, 48: 35–71. DOI: 10.1007/s12526-017-0815-z.
  • Zhang C.L., Huang Z., Cantu J., Pancost R.D., Brigmon R.L., Lyons T.W., Sassen R., 2005. Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mats associated with gas hydrates in the Gulf of Mexico. Applied and Environmental Microbiology, 71: 2106–2112. DOI: 10.1128/AEM.71.4.2106-2112.2005.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cb8c342-2fa9-4fef-9f7d-3a5efea645b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.