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ELEMENTS OF MATHEMATICAL EPISTEMOLOGY –
ELEMENTS OF THE PHILOSOPHY
OF TEACHING MATHEMATICS

RYSZARD J. PAWLAK, EWA KORCZAK-KUBIAK

Abstract

In the paper we present the main idea of the concept which we have called confronta-
tional concept of mathematical epistemology. We refer it to philosophy of mathematics
(in the context of epistemology of research) as well as to didactic problems (in the con-
text of teacher preparation). Although we tried not to involve our discussion directly
with any existing concepts of the philosophy of mathematics, however, in the paper one
can notice some elements of modern formalism as well as Lakatos quasi-empiricism or
a modern approach to structuralism.

1. Introduction

Any philosophy of mathematics has powerful impli-
cations for social and educational issues and many
didactic consequences.

P. Ernest

Let us start first by considering the idea of E. P. Wigner, described by
R. Murawski in the introduction to the article Inconceivable effectiveness of
mathematics in the natural sciences ([13]):

Wigner states that mathematics has no content and it is only a “formal
fun”. A mathematician therefore does not have any real knowledge, but
only some specific skills of deft concept manipulation. A prime example,
quoted by the author, are complex numbers. They have no analogue in the
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real world. They are only a very useful tool. They have no ontological
background.

If we are surprised by such an attitude to mathematics, then we unfortu-
nately must swallow a bitter pill – it is a very popular point of view, even
among highly educated people. Why? Because they have encountered such
mathematics at school, college and university, even in books that aim to
popularize maths. Such mathematics is given for applications to engineers,
physicists, chemists and... future maths teachers.

Is it dangerous? Definitely, YES. It leads to the opinion that it is impos-
sible or even unnecessary to understand mathematics: that it is sufficient
to know which formulas are necessary in a particular situation and apply
them. Those formulas are useful, but only by accident... A hammer is also
useful, but frequently one can manage without it replacing it, for example,
with a stone... Why do such opinions arise? One cannot escape these opin-
ions even when formulas usefulness is demonstrated or when it is shown
that they are the best methods for solving a problem. They are caused by
a lack of understanding of “the spirit of mathematics” and a lack of basic
reference to the philosophy of mathematics.

The aim of this paper is not to present detailed characterizations of dif-
ferent concepts within the scope of the philosophy of mathematics. We
completely omit, for example, ontological problems. One can find detailed
information about historical and modern approaches to particular branches
in books e.g. [11], [12], [13]. More information, in particular referring to
intuitionism and formalism can be found in other sources as well as on Inter-
net. Presenting them or referring such literature related to these theories
here would be an unnecessary lengthening of this article. Our aim is to
show a new concept which although rooted in old ideas of the philosophy
of maths, will shed new light on contemporary problems of mathematical
epistemology.

2. Epistemological basis and the concept of confrontation

Let us start by specifying the meaning of notions which will be used in
the article.

By a mathematical theory we will mean a theory built on a specified ax-
iomatic system, preserving inference rules. We will not touch on logicism1

1More contemporary approach to logicism can be found in the studies of H. Weyl
([21], [22]) and E. T. Bell ([1]). Currently, this concept has been rather absorbed by the
formalism.
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and formalism too much here2. Thus analysis of formal theories is not es-
sential in our considerations. Roughly speaking: Mathematical theory is
the (mathematical) universe in which we currently operate. We can change
or modify it (for example by adding or eliminating axioms), but we “func-
tion” within it, and our activities have to be focused on discovering it as
effectively as possible.

A mathematical structure is a set of known mathematical objects (defi-
nitions, theorems, local assumptions, examples etc.) creating a connected
system within the scope of a specified mathematical theory. It is a very
broad notion. We can consider, for example, topological structures, but
we can also distinguish some specific structures: the structure of general
topology or the structure of metric topology (the second one, is in a natural
way, contained in the first one). One can also talk (using mathematical
language) about, for example, structure of algebraic topology. Sometimes
it is difficult to distinguish and name a mathematical structure.

A system of specified theory and the mathematical structures comple-
mented by the genesis (history) of a problem3 will be called an epistemo-
logical basis.

Let us consider some examples.
The first one is connected with the notion of entropy in discrete dynam-

ical systems.
Let us start with a mathematical theory. Obviously, the basis of all

analysis contains, for example, the axioms of the set theory, although it is
not always emphasized by researchers. However, if “continuum hypothesis”
is employed, then reference to axiomatic basis is essential4.

Yet, this example very consciously takes into account the history of the
problem and the mathematical structure, in which considerations are carried
out.

Now we will quote (with slight editorial modifications) a fragment of the
article by E. Korczak-Kubiak, A. Loranty, R. J. Pawlak ([10]):

First, we present some intuitive description of problems connected with
information system and information flow. Assume that we have a set X
of elements (information) divided into a finite number of disjoint subsets
{A1, A2, . . . , Ak}, which are distinguished on the basis of fixed attributes
(this partition is denoted by P ). Suppose also that we have a probability

2We do not touch on means: we do not create derivative interpretations even in such
contemporary works as [16].

3It is worth noting here the relationship of epistemological basis with Principle of
parallelism mentioned, among others, by R. Duda ([6]).

4In the context of this issue in relation to discrete dynamical systems, prof. P. Szuca
drew my attention to the work of A. Blass ([2]).
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measure µ on X, so
k∑
i=1

µ (Ai) = 1. Then we may assign to the partition P

the number (the entropy of partition) defined in the following way:

H (P ) := −
k∑
i=1

µ (Ai) · logµ (Ai) .

Roughly speaking, if partition P describes a state of information flow, the
number H (P ) may be regarded as a “measure of uncertainty”. If H (P ) = 0,
then situation is defined precisely – measure is focused on some set Ai0 from
the partition P (i.e. µ (Ai0) = 1). Moreover, we can say that the higher the
entropy of partition is, the greater uncertainty is (in this case, the measure
is more evenly distributed over the different sets of the partition).

After a given period of time, elements of X change the values of their at-
tributes and thereby they “move” to the other sets. Perhaps a new partition
of X (onto sets measurable with respect to µ) is created. These changes are
described by a certain (invariant) function – let us denote it by φ. After
the next unit of time, the elements “move” again and we obtain a new par-
tition of X. The changes are described by the function φ. It means that
in comparison to initial state these changes are described by the function
φ2 = φ ◦ φ. Going further in this way, we obtain the dynamics of the func-
tion φ. The entropy of φ with respect to the measure µ is defined in the
following way. Let P = {Ai : i = 1, ...,m} be a decomposition of X such
that Ai are µ-measurable for i ∈ {1, ...,m}. The metric entropy of φ with
respect to the measure µ is the number hµ (φ) = supP hµ (φ,P), where

hµ (φ,P) = − lim
n→∞

1

n
·

∑
B∈Rn−1(P)

µ (B) · logµ (B)

and Rn−1 (P) is the set containing all intersections of the form

Ai1 ∩ φ−1 (Ai2) ∩ ... ∩ φ−(n−1) (Ain) .
The entropy of this function determines the level of uncertainty of dynamics
of function φ. If it is 0, then we can talk about a certain stability of this
dynamics. If it is greater than 0, we can say that this dynamics is chaotic
and the number qualified as the entropy can be considered as a certain kind
of “measure of chaos”.

An important way of “describing chaos” of certain actions directly related
to the structures that could be conventionally called “metrical” was created
in this manner. This, however, was insufficient. Many considerations are
based on topological structures, so that these achievements were confronted
with them.
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In the sixties of the twentieth century R. L. Adler, A. G. Konheim and
M. H. McAndrew introduced the notion of the topological entropy of a con-
tinuous function f : X → X defined on a compact space X.

However, introduction of this notion could not be isolated from its his-
torical context, so that there were attempts of confronting it with metrical
approach. In 1971 T. Goodman proved the variational principle determin-
ing the relationship between the topological entropy and the entropy with
respect to measure, which in the most general form, taking into account
later research, one can write in the following way:

Theorem 1. For any function f we have:

h (f) = sup{hµ (f) : µ is a probability f -invariant Borel measure on X}.

One should mention in passing that the changes mentioned above, were
also the consequence of confrontation with different structures. The starting
points were structures based on continuous functions, and later analogues
were searched for, in the case of less obvious structures of Darboux-like func-
tions: [19], [4]. Simultaneously, studies have been carried out, where exist-
ing structures connected with examinations of discrete dynamical systems
are confronted with algebraic structures (see [7] or [8]) or with generalized
topological spaces (see e.g. [15]).

It is worth noting here the emergence of the generalized topological
spaces.

In many issues, the assumptions associated with topological spaces are
very difficult to achieve. Indeed, suppose that we have a finite or infinite
set X and a dynamics on the elements of this set described by a function
or multifunction T . To be able to apply mathematical tools, we need some
(topological) structure on this set. How to define it? If we examine the
dynamics of the function, it is natural to distinguish such sets A for which
A ⊂ T (A) (in the notation which is typical for the theory of discrete dy-
namical systems: A →

T
A). Thus it would be convenient to consider such

a family of sets, but it will not be a topology. We can confront this situation
with generalized topological spaces introduced by Á. Császár ([5]).

The problems we have mentioned need not be referred only to new no-
tions, but also to the properties of existing objects. Brouwer Theorem on
a fixed point does not lead to new notions (in opposite to Banach Theorem
which gives the possibility to distinguish a new class of functions: contrac-
tion). Simultaneously, it is frequently implied that new notions necessitate
expansion of the existing structures. Then we return to the logic (and fixed
inference rules), understood as the specified mathematical theory. However,
sometimes we need to modify our theory. In particular, note that our prob-
lem may be unprovable within the theory (Gödel discoveries). A meaningful
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example of such a situation is the continuum hypothesis. Obviously, then
we can add a new axiom or simply assume it locally. It is in accordance
with Russell concept (following R. Murawski [13]):

Speaking about the difficulties faced by the doctrine of logicism, Carnap
first mentioned of problems related to the fact that in the proofs of many
mathematical theorems it is necessary to use certain principles that are not
purely logical, for example, the axiom of infinity and the axiom of choice.
Russell, however, has found a simple solution to this problem i.e. consid-
ering in this case not the theorem T , but the implication A ⇒ T , where
A is, for example, the axiom of infinity. By the theorem of deduction, this
implication is then a logical theorem.

In order to illustrate this problem let us present a piece of research led,
among others, by prof. T. Natkaniec (see [14]).

Problem. Is every function f ∈ D∗ (R,R) (i.e. function having a dense
level) a composition of (two) almost continuous functions?

Let us adopt the following denotations:
A (c) – the union of less than 2ω many first category subsets of R is of the
first category again.
A (m) – the union of less than 2ω many Lebesgue measure zero subsets of R
is of the Lebesgue measure zero again.

It is well known that these two conditions follow from Martin’s axiom
and also from Continuum Hypothesis.

A general answer to the problem of ZFC, presented above has not yet been
found. Nevertheless, it is possible to give some answers that “enrich” the
theory (speaking less scientifically: by introducing some new assumptions
to our mathematical universe).

Theorem 2. ([14]). Assume A (c). Then each f ∈ D∗ (R,R) can be ex-
pressed as a composition of two almost continuous functions.

It is clear that we have here an application of Russell’s concept. The last
theorem is a certain solution to this problem. Is it the ultimate one? Time
will tell. For now, the solution has been included into the structures of real
analysis and topology.

There is one more important element which should be emphasized: join-
ing the structures. A proper example here is famous proof of Fermat The-
orem5. Sometimes we definitely have to go beyond our structure.

At the fringe of our considerations we should mention that during the
necessary confrontation within the scope of a mathematical theory as well

5An interesting description of the problem as well as a sketch of solution connected
with elliptic curves can be found for example in [20].
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as mathematical structures, one can meet epistemological obstacles6 that
may make the process of discovering mathematical facts slower.

What is the main idea of the concept we have called the confrontational
concept of mathematical epistemology?

First we have the PROBLEM, which sometimes results from the con-
frontations of existing solutions, and of existing necessities with respect to
different epistemological basis – for example problem of entropy with respect
to measure and topological entropy. The basic element is confrontation of
the problem with an epistemological basis. Further, the process of SOLV-
ING THE PROBLEM begins. Here, we can refer to rich literature within
the scope of the philosophy of mathematics, as well as didactics of math-
ematics. The solution to the problem appears as a result of continuous
confrontation between intuition and formalism, supported by motivating
factors, with continuous confrontation of obtained (partial) results with
epistemological basis (such idea is wider than formalistic approach). Fi-
nally, THE RESULT appears. We avoid using the phrase “solution to the
problem” intentionally, as it is frequently only a partial solution or state-
ment that the problem is unsolvable. The result is also confronted with
epistemological basis.

The graphical illustration of the process is presented below.

Although we have declared we should not touch on logicism and for-
malism, it is clear that in the concept described above one can easily find
elements of modern formalism7 as well as Lakatos quasi-empiricism8 and
a modern approach to structuralism9. However, our concept does not con-
tain the whole scope of the philosophy of mathematics. It is, in a sense,

6This notion is due to G. Brusseau (see [17]).
7A particular role is played here by ZFC axiom system mentioned earlier. Moreover,

iterative concepts and problem of infinity seems to be interesting.
8The wider context of quasi-empiricism would arise in the analysis of the process of

solving problem. Particular importance in the context of these issues would be critical
rationalism and rational falsification.

9Studies of C. H. Parsons are particularly interesting here.
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its power. For example, we do not analyse whether the infinity should be
treated only hypothetically and we do not analyse the sense of existence of
infinity axiom. If we examine an issue where we need such assumptions,
then we confront these needs with existing knowledge of them. We check
in which structures the analysed problems exist and how we can or should
change the scope of these structures. Finally, we are interested in the history
of the problem: how to cope with this particular or similar problem(s).

3. Didactic issues
In the framework of the range of important topics in the
theory-practice relation, I shall concentrate on certain as-
pects of the mathematical knowledge negotiated and me-
diated in this relationship. Theoretical perspective will
not be curricular, historical, or mathematical, but an at-
tempt to use the epistemological basis10 of mathematics.
If it is accepted that epistemology is the scientific enter-
prise of investigating the status, structure, and meaning
of knowledge, then this perspective becomes indispensable
for the analysis of such indirect modes of cooperation be-
tween scientific didactics and everyday teaching practice
that aim a communication as a reciprocal dialogue search-
ing for possibilities off constructing and enhancing meaning
and not simply conveying knowledge matter. The intention
is not to describe the mediation of a coherent didactical the-
ory named “mathematical epistemology” to the practice of
mathematics teaching, but to stress and to use epistemo-
logical considerations of mathematical knowledge, because
this is an essential characteristic of every process of medi-
ating knowledge between teacher and students as well as
between researcher and teacher.

H. Steinbring ([18])
Mathematical education is a complex issue which is examined and anal-

ysed in various ways. It is no wonder that within the scope of didactics of
mathematics there are many papers whose parts deal with mathematical
philosophy and the philosophy of didactics of mathematics (e.g. articles
by P. Ernest, M. Otte and F. Seeger, M. Niss, or R. Noss contained in
monograph edited by: R. Biehler, R. W. Scolz, R. Strässer, B. Winkel-
mann Didactics of mathematics as a scientific discipline, Kluwer Academic

10The meaning of the notion “epistemological basis” in the H. Steinbring’s article
(1994) is a little different and narrower than in our paper. However this quotation may
constitute some kind of introduction to this part of our article.



ELEMENTS OF MATHEMATICAL EPISTEMOLOGY 19

Publishers, Math. Education Library; and in Poland, in a very interest-
ing article by E. Jagoda, M. Pytlak, E. Swoboda, S. Turnau, A. Urbańska
([9])).11

What do we mean by the philosophy of didactics of mathematics?
First of all we should refer directly to mathematical epistemology, so that
we understand it as a science examining general cognitive processes within
mathematics. Of course we do not refer to the whole issue, but we con-
centrate on ‘teaching philosophy’ (in some coherence of learning, but also
with a certain distance to the student, as referred to a teachers’ approach).
Before presenting our concept, we will formulate a general “axiom”12 con-
cerning this issue:

Nowadays, building mathematical knowledge of individuals must
contain elements of confrontation with the modern educational

and epistemological basis.

Leaving the above statement without any comment may cause a lot of
misunderstandings.

Let us start with a simple statement: The above axiom refers mainly
to a teacher13. It concerns a student only indirectly: through the impact
of a teacher (not through requirements!). Those involved in the process of
acquiring knowledge are “getting used to” confronting their activities with
a contemporary educational and epistemological basis (within the scope of
the availability of these activities).

It is also important to join modern educational and epistemological basis
by a conjunction. An essential problem for a teacher is the capability to
include innovative didactic and educational solutions into the teaching pro-
cess, and confronting the effects with an epistemological basis. It is directly
connected with the following observation:

If a teacher does not have any knowledge of or reflections on the phi-
losophy of mathematics, he or she will “create” his own philosophy, often
imperfect and highly confined, and sometimes burdened with many errors.
His/her attitude and seemingly unimportant comments will create in stu-
dents’ minds a completely false view of mathematics – a view which often
turns into a reluctance to pursue the subject. Let us look at some examples.

11Of course, these are only examples. In fact, it would be possible to mention more
authors here.

12The use of the word “axiom” is to show the relationship with the general concept of
Maths. One can use words like: principle, suggestion, etc., but in our opinion it would
not show the heart of the matter. This thesis is set to be an axiom (in the absolute
understanding of this word).

13We mean here also someone preparing e-learning materials.
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Negative numbers.
Let us start with the historical background. Negative numbers were intro-
duced into mathematics quite late. The Babylonians did not know them
(although they certainly knew the concept of debt). The Chinese in II cen-
tury BC made some observations connected with them, and in Greece only
Diofantos from Alexandria (III century) used some of their properties. If we
follow more closely the history of these numbers, we will see that practical
motivation was not sufficient to develop their wider theory. The introduc-
tion of these numbers to mathematics is due to research by Descartes and
I. Newton. Modern approach to arithmetic of integers appeared in XIX
century.

By the didactic principle of parallelism we already have the first con-
frontations with the epistemological basis (history of the problem). Let us
repeat: the notion of a debt was not enough motivation to consider such
numbers! When was the breakthrough? The first step forward came as
a natural need “to extend the axis” and from Descartes’ work. This is the
first observation.

Now, let us consider further confrontations: one of the basic constructions
of these numbers in the modern theoretical arithmetic is the method using
equivalence classes of pairs of positive integers. Thus we have our next
observation: a negative number should be related to an (ordered) pair of
numbers.

Let us perform one more confrontation. Pairs of numbers related to
integers should be connected with operations on these pairs. What is more,
these operations have to agree with the basis of ring structure and they can
not “change results of operations for positive integers”.

All these things constitute the knowledge of a teacher, which should be
used while developing definitive didactic solutions aiming to introduce these
numbers.

How do we translate this knowledge into examples of a methodical so-
lution? We will be avoiding detailed solutions here. We will only present
a general scheme.

Students know the number line (semi-number line) “with beginning at 0”.
We draw the number line and try to interpret operations like 2 + 3, 8− 2,
6 − 4, etc. with respect to specific issues such as, for example, inflow and
outflow of money. In this way we realize a request of one of confrontations:
we operate with pairs of numbers. At some point, we meet the operation
2 − 3. The point is not to give a result but to interpret the operation on
the number line (corollary from the principle of parallelism). May be it
would be advantageous to give such a problem to students several times.
At some point a natural solution will appear: “extension of the number line
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into the left”. In such a way, new numbers will appear. How should they
be denoted? Again, it is worth to confront it with the epistemological basis
in the interpretation of our needs. Numbers obtained from operations 2− 3
and 0 − 1 are the same. Similarly the same are the numbers derived from
operations 3 − 5 and 0 − 2. We could therefore denote these numbers by
0 − 1, 0 − 2, . . . . As 0 would always repeat, we can skip it and we obtain
−1, −2, . . . And now the problem of operations. Here we come to the heart
of the confrontational method ! We should not create the conviction that
we deal with the following situation: the operations are “somehow” defined
and “accidentally” they have the same properties as they have for positive
integers.

We definitely need to emphasize that the operations should be defined in
such a way to have respective properties (associativity, commutativeness,
a neutral element, etc.)

We do not have to name these properties. We can discover the compu-
tation ways with students, but we should “convince them” that this is not
accidental, that the power of mathematics lies in its structures. Definitely,
the matter is not learning structures, or even through the structures, but
within the confrontation to these structures14.

Let us come back for a moment to the idea of E. P. Wigner (at the
beginning of the paper). The power of the application of complex numbers
does not come from the fact that someone has discovered, during sleepless
nights, that we can solve the equation x2+1 = 0. Then, it would be enough
simply to join a symbol to the set of real numbers and to make the agreement
that this is a solution to this equation. In fact, it would not give us anything
because, for example, the equation x2+2 = 0 would still not have a solution.
“The power of complex numbers” lies in the fact that the considerations for
that problem have always been connected with certain structures, and what
is more, the isomorphism of Gauss and Hamilton solutions was obtained.

Similar solutions can be shown with respect to a derivative of a function.
If you do not confront didactic solutions with an epistemological basis,
then the notion will be very difficult. Its usefulness will seem completely
accidental, and it may discourage rather than motivate the student to work.
The sources of the concept of derivative can be found in physics. So let us
start with the simplest problem15, for example:
Within the first five seconds of a motion, the dependence of distance on the

duration x is described by the function f (x) = 5x2.

14Meaningful examples here are quaternions and Cayley octaves. We are forced to
restrict the structures here (for example, multiplication is not commutative).

15Obviously one can relate the problem for example to falling objects. The presented
function is “close” to the description of a free fall.
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Now, we give a free hand to students, simultaneously directing them to the
question: how was the object velocity, for example, in the third second of
the motion? The problem is that we do not even know how to say: what
is a velocity at a moment? However, we can compute the average velocities
in successive intervals with an excess (between the 3-rd and the 4-th sec-
ond) and with insufficiency (between the 2-nd and the 3-rd second). Thus
the object velocity at the 3-rd second of the motion is within the range of
25 m/s and 35 m/s. By decreasing the intervals (for example (3; 3.5) and
(2.5; 3)) we obtain more accurate estimations: the range between 27.5 m/s
and 32.5 m/s. Obviously one can further decrease the intervals (calcula-
tions using a calculator or computer), but very soon one can find that the
obtained ranges “will converge” (whatever it means) to the value of 30 m/s.
This is a derivative f ′ (3) = 30. Now we must consciously confront our
discovery with an epistemological basis. As a result of this confrontation,
the average velocity will change into the difference quotient and converging
of the obtained ranges into the limit of difference quotient. It may also be-
come possible to find an answer to the question: what does instantaneous
velocity mean?

We have presented the examples of confrontational method with respect
to introducing new notions, because it is particularly easily seen in such
a case.

We should once more emphasize: the presented “axiom” is related mainly
to a teacher and to his/her didactic and methodical choices. Just as the
mathematical maturity of students grows, the style of confrontation with
epistemological basis should be included into their direct actions.

In conclusion, it should be emphasized that if we do not apply this “ax-
iom”, it may lead not only to a lack of understanding of mathematics as
a science, but also to a lack of understanding of the mathematical tools
we use. The classic example is the ancient method of analysis (analisis
antiquorum) for solving equations.

4. Conclusion

We are aware of the fact that the article has an introductory charac-
ter, in the sense of “inducing the discussion”. Mathematics is surprisingly
useful. To fully understand why the moth flying into to a bulb, contin-
ues to approach it until its death, you need to know the logarithmic spiral
(Bernoulli)16. In order to investigate certain sociological or economic is-
sues we apply a Gaussian normal distribution using the number π, whose
genesis has nothing to do with these issues. The solutions of logistical prob-
lems are often based on difference and differential equations, which arose

16Following K. Ciesielski, K. Pogoda [3]).
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when the scale of the logistical problems did not require too sophisticated
mathematical tools. Finally, climate change, some aspects of biology and
environmental protection, or even elements of art, are examined and anal-
ysed using mathematical rules that were created without any connection
with these applications.

It all indicates that in the modern world mathematics is needed more
than ever before. Many mathematics educators indicate that one of the
most important tasks of modern teaching of mathematics is the problem of
the relationship of theory and practice17. This is a very important obser-
vation! However, a one-sided approach to this issue may in the long term
bring about the opposite effect. Simple mathematical issues may be applied
for simple problems only. This is needed but at school level we can not go
further. However, to understand many of the issues “the modern world”
needs higher mathematics, what’s more, using mathematics, not previously
met. One of the students of doctoral studies talked about her practice at
the Ministry of Foreign Affairs. She had to perform analysis using differ-
ence equations, which she did not know. Moreover, she could not apply
directly the found facts – they had to be modified. That is the example of
situation people in modern world must be prepared for. In our opinion, one
of the elements of such preparation will be awareness of the need to con-
front one’s thoughts with epistemological basis. Such an awareness must
be built (gradually and systematically) and maintained by a teacher, but
first a teacher must have knowledge in this field and be convinced of such
a need.
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