Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Formal Concept Analysis (FCA) has been proven to be an effective method of restructuring complete lattices and various algebraic domains. In this paper, the notion of contractive mappings over formal contexts is proposed, which can be viewed as a generalization of interior operators on sets into the framework of FCA. Then, by considering subset-selections consistent with contractive mappings, the notions of attribute continuous formal contexts and continuous concepts are introduced. It is shown that the set of continuous concepts of an attribute continuous formal context forms a continuous domain, and every continuous domain can be restructured in this way. Moreover, the notion of F-morphisms is identified to produce a category equivalent to that of continuous domains with Scott continuous functions. The paper also investigates the representations of various subclasses of continuous domains including algebraic domains and stably continuous semilattices.
Wydawca
Czasopismo
Rocznik
Tom
Strony
295--319
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
- School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
autor
- College of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan, 410012, China
autor
- School of Mathematics, Hunan University, Changsha, Hunan, 410082, China
Bibliografia
- [1] Abramsky S. Domain Theory in Logical Form. Annals of Pure and Applied Logic, 1991. 51:1-77. doi:10.1016/0168-0072(91)90065-T.
- [2] Chen Y, Jung A. A Logical Approach to Stable Domains. Theoretical Computer Science, 2006. 368:124-148. doi:10.1016/j.tcs.2006.09.005.
- [3] Davey B, Priestley H. Introduction to Lattices and Order. Cambridge University Press, Cambridge, 2002. ISBN: 0-521-78451-4. 2nd Edition.
- [4] Ganter B, Wille R. Formal Concept Analysis. Springer-Verlag, 1999. ISBN: 978-3-540-62771-5.
- [5] Gierz G, Hofmann K, Keimel K, Lawson J, Mislove M, Scott D. Continuous Lattices and Domains. Cambridge University Press, 2003. ISBN: 9780521803380.
- [6] Guo L, Huang F, Li Q, Zhang GQ. Power Contexts and Their Concept Lattices. Discrete Mathematics, 2011. 311:2049-2063. doi10.1016/j.disc.2011.04.033.
- [7] Guo L, Li Q, Huang M. A Categorical Representation of Algebraic Domains Based on Variations of Rough Approximable Concepts. International Journal of Approximate Reasoning, 2014. 55:885-895. doi:10.1016/j.ijar.2013.09.008.
- [8] Guo L, Li Q. The Categorical Equivalence between Algebraic Domains and F-augmented Closure Spaces. Order, 2015. 32:101-116. doi:10.1007/s11083-014-9318-8.
- [9] Hitzler P, Kröetzsch M, Zhang GQ. A Categorical View on Algebraic Lattices in Formal Concept Analysis. Fundamenta Informaticae, 2006. 74:1-29. doi:10.1142/S0219477506003495.
- [10] Huang M, Li Q, Guo L. Formal Context for Algebraic Domains. Electronic Notes in Theoretical Computer Science, 2014. 301:79-90. doi:10.1016/j.entcs.2014.01.007.
- [11] Jung A, Kegelmann M, Moshier M. Multi Lingual Sequent Calculus and Coherent Spaces. Fundamenta Informaticae, 1999. 37:369-412. doi:10.1016/S1571-0661(05)80160-4.
- [12] Jung A. Continuous Domain Theory in Logical Form. Lecture Notes in Computer Science, 2013. 7860: 166-177. doi:10.1007/978-3-642-38164-5_12.
- [13] Kröetzsch M, Hitzler P, Zhang GQ. Morphisms in Context. Lecture Notes in Computer Science, 2005. 3596:223-237. doi:10.1007/11524564_15.
- [14] Lai H, Zhang D. Concept Lattices of Fuzzy Contexts: Formal Concept Analysis vs. Rough Set Theory. International Journal of Approximate Reasoning, 2009. 50:695-707. doi:10.1016/j.ijar.2008.12.002.
- [15] Ledda A. Stone-type Representations and Dualities for Varieties of Bilattices. Studia Logica, 2018. 106(2):417-448. doi:10.1007/s11225-017-9745-9.
- [16] Lei Y, Luo M. Rough Concept Lattices and Domains. Annals of Pure and Applied Logic, 2009. 159:333-340. doi:10.1016/j.apal.2008.09.028.
- [17] Li J, Huang C, Qi J, Qian Y, Liu W. Three-way Cognitive Concept Learning via Multi-granularity. Information Sciences, 2017. 378(1):244-263. doi:10.1016/j.ins.2016.04.051.
- [18] Li J, Kumar C, Mei C, Wang X. Comparison of Reduction in Formal Decision Contexts. International Journal of Approximate Reasoning, 2017. 80:100-122. doi:10.1016/j.ijar.2016.08.007.
- [19] Mac Lane S. Categories for the Working Mathematician. Springer Verlag, 1971. ISBN: 978-0-387-90036-0.
- [20] Poelmans J, Ignatov D, Kuznetsov S, Dedene G. Formal Concept Analysis in Knowledge Processing: A Survey on Applications. Expert Systems with Applications, 2013. 40:6538-6560. doi:10.1016/j.eswa.2013.05.009.
- [21] Reus B, Streicher T. General Synthetic Domain Theory C A Logical Approach. Mathematical Structures in Computer Science , 1999. 9(2):177-223. doi:10.1017/S096012959900273X.
- [22] Scott D. Domains for Denotational Semantics. Lecture Notes in Computer Science, 1982. 140: 577-613. doi:10.1007/BFb0012801.
- [23] Spreen D, Xu L, Mao X. Information Systems Revisited: The General Continuous Case. Theoretical Computer Science, 2008. 405:176-187. doi:10.1016/j.tcs.2008.06.032.
- [24] Vickers S. Topology via Logic. Cambridge University Press, 1989. ISBN: 0-521-36062-5.
- [25] Wang L, Li Q. A Representation of Proper BC Domains Based on Conjunctive Sequent Calculi. Mathematical Structures in Computer Science, 2020. 30:1-13. doi:10.1017/S096012951900015X.
- [26] Wang L, Li Q. A Logic for Lawson Compact Algebraic L-domains. Theoretical Computer Science, 2020. 813:410-427. doi:10.1016/j.tcs.2020.01.025.
- [27] Zhang GQ. Chu Spaces, Concept Lattices, and Domains. Electronic Notes in Theoretical Computer Science, 2003. 83:287-302. doi:10.1016/S1571-0661(03)50016-0.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5cab56c4-0f32-471a-8a69-5cf182f09b37