Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The management of land use is a significant factor in maintaining the equilibrium of carbon stocks. However, the expansion of infrastructure, mining, industry, trade, economic activity and population has resulted in significant changes to land use, which have led to a reduction in carbon stock reserves. The objective of this study was to map the level of carbon stock reserves and to analyse the variable driving forces of carbon stock change. The variables used in this study encompass 21 distinct types, including: socio-economic, physical, locational, land and spatial planning aspects. The dependent variable comprises the level of carbon stock by land use type in 2014, 2018, and 2022. Spatial regression analysis was employed to ascertain the driving forces that exert a predominant influence on alterations in carbon stock reserves. The results of the spatial regression analysis between the dependent and independent variables yielded a highly significant correlation, as indicated by the R-square value exceeding 0.09. This condition is influenced by the use of complex and comprehensive variables, as well as the use of spatial regression which is able to analyse between variables by considering spatial aspects. The results of the analysis demonstrate that location variables (city centre, airport and road accessibility), physical variables (relative relief) and land variables (land title status) are the most dominant variables. The analysis of the driving force of carbon stock change represents a crucial aspect of land use management and the control of land use change from areas with high to low carbon stock. In order to maintain the balance of carbon stock reserves, it is essential to optimise mangrove areas and implement reforestation initiatives in forest areas.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
83--101
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
autor
- Doctoral Program of Environmental Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Land Management Study Program, Sekolah Tinggi Pertanahan Nasional, Yogyakarta, Indonesia
autor
- Faculty of Economics and Business, Universitas Gadjah Mada, Yogyakarta, Indonesia
autor
- Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia
Bibliografia
- 1. Alexandri, E., Antón, J.I., Lewney, R. 2024. The impact of climate change mitigation policies on European labour markets. Ecological Economics, 216. https://doi.org/10.1016/j.ecolecon.2023.108022
- 2. Anand, V., Oinam, B. 2019. Future climate change impact on hydrological regime of river basin using SWAT model. Global Journal of Environmental Science and Management, 5(4), 471–484. https://doi.org/10.22034/gjesm.2019.04.07
- 3. Anindita, S., Sleutel, S., Vandenberghe, D., De Grave, J., Vandenhende, V., Finke, P. 2022. Land use impacts on weathering, soil properties, and carbon storage in wet Andosols, Indonesia. Geoderma, 423. https://doi.org/10.1016/j.geoderma.2022.115963
- 4. Anselin. 1998. Spatial econometrics: methods and models. Dordrecht. Netherlands (NL): Kluwer Academic Publisher
- 5. Bakute, A., Grinfelde, I., Pilecka-Ulcugaceva, J., Liepa, S., Siltumens, K. 2021. The land use and climate change impact on lake usma hydrological regime (T.O. & R.B., Eds.; 21(3/20): 159–165). International Multidisciplinary Scientific Geoconference. https://doi.org/10.5593/sgem2021V/3.2/s12.24
- 6. Balch, J.K., Nagy, R.C., Archibald, S., Bowman, D.M.J.S., Moritz, M.A., Roos, C. I., Scott, A.C., Williamson, G.J. 2016. Global combustion: The connection between fossil fuel and biomass burning emissions (1997–2010). Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1696). https://doi.org/10.1098/rstb.2015.0177
- 7. Caraka, R.E., Yasin, H. 2017. Geographically weighted regression: A Geographic Regression Study. https://doi.org/10.5281/zenodo.1168741
- 8. Chu, L.K., Doğan, B., Ghosh, S., Shahbaz, M. 2023. The influence of shadow economy, environmental policies and geopolitical risk on renewable energy: A comparison of high- and middle-income countries. Journal of Environmental Management, 342(April). https://doi.org/10.1016/j.jenvman.2023.118122
- 9. Chuong, H.N., Loc, T.T., Tuyen, T.L.T., Ngoc, B.H. 2024. Livelihood transitions in rural Vietnam under climate change effects in the period of 2008–2018. Discover Sustainability, 5(1). https://doi.org/10.1007/s43621-023-00178-y
- 10. Fadhli, R., Sugianto, S., Syakur, S. 2021. Analysis of land cover change and carbon potential in Pocut Meurah Intan Grand Forest Park, Aceh Indonesia. Journal of Environmental Science/Jurnal Ilmu Lingkungan, 19(2), 450–458. https://doi.org/10.14710/jil.19.2.450-458
- 11. Feng, C., Ye, G., Zeng, J., Zeng, J., Jiang, Q., He, L., Zhang, Y., Xu, Z. 2023. Sustainably developing global blue carbon for climate change mitigation and economic benefits through international cooperation. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-41870-x
- 12. Feng, X., Wang, Z., Zhang, Z., Zhang, J., Zeng, Q., Tian, D., Li, C., Jiang, L., Wang, Y., Yuan, B., Zhang, Y., Zhu, J. 2024. Temporal and spatial changes and driving forces of carbon stocks and net ecosystem productivity: a case study of Zoige County, Sichuan Province, China. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-024-01911-4
- 13. Fu, K., Chen, L., Yu, X., Jia, G. 2024. How has carbon storage changed in the Yili-Tianshan region over the past three decades and into the future? What has driven it to change? Science of the Total Environment, 945. https://doi.org/10.1016/j.scitotenv.2024.174005
- 14. Gabriele, M., Brumana, R., Previtali, M., Cazzani, A. 2023. A combined GIS and remote sensing approach for monitoring climate change-related land degradation to support landscape preservation and planning tools: the Basilicata case study. Applied Geomatics, 15(3), 497–532. https://doi.org/10.1007/s12518-022-00437-z
- 15. Gençay, G., Durkaya, B. 2023. What is meant by land-use change? Effects of mining activities on forest and climate change. Environmental Monitoring and Assessment, 195(6). https://doi.org/10.1007/s10661-023-11396-2
- 16. Hasbi, Y., Hakim, A.R., Warsito, B. 2014. Regresi Spasial (Aplikasi dengan R). Wade Group National Publishing.
- 17. Hassan, B.T., Yassine, M., Amin, D. 2022. Comparison of urbanization, climate change, and drainage design impacts on urban flashfloods in an arid region: case study, New Cairo, Egypt. Water (Switzerland), 14(15). https://doi.org/10.3390/w14152430
- 18. Hayes, W.M., Voigt, M., Rosa, I., Cort, K.A., Kotlinski, N., Kalamandeen, M., Davies, Z.G., Bicknell, J.E. 2023. Predicting the loss of forests, carbon stocks and biodiversity driven by a neotropical ‘gold rush’. Biological Conservation, 286. https://doi.org/10.1016/j.biocon.2023.110312
- 19. Hortay, O., Pálvölgyi, T. 2022. Driving forces in carbon dioxide emissions of the Hungarian Transport Sector. Periodica Polytechnica Transportation Engineering, 50(1), 23–27. https://doi.org/10.3311/PPtr.15823
- 20. Huang, J. 2018. Investigating the driving forces of China’s carbon intensity based on a dynamic spatial model. Environmental Science and Pollution Research, 25(22), 21833–21843. https://doi.org/10.1007/s11356-018-2307-5
- 21. International Council for Local Environmental Initiatives. 2022, Local Governments for Sustainability
- 22. Laino, E., Iglesias, G. 2023. Scientometric review of climate-change extreme impacts on coastal cities. In Ocean and Coastal Management 242. Elsevier Ltd. https://doi.org/10.1016/j.ocecoaman.2023.106709
- 23. Liu, J., Yan, Q., Zhang, M. 2023. Ecosystem carbon storage considering combined environmental and land-use changes in the future and pathways to carbon neutrality in developed regions. Science of the Total Environment, 903(November 2022), 166204. https://doi.org/10.1016/j.scitotenv.2023.166204
- 24. Mahmoudzadeh, H., Abedini, A. 2022. Urban growth modeling and land-use/land-cover change analysis in a Metropolitan Area (Case Study: Tabriz). https://doi.org/https://doi.org/10.3390/land11122162
- 25. Mariye, M., Jianhua, L., Maryo, M. 2022. Land use land cover change analysis and detection of its drivers using geospatial techniques: a case of south-central Ethiopia. All Earth, 34(1), 309–332. https://doi.org/10.1080/27669645.2022.2139023
- 26. Mekonnen, M., Abebaw, M., Mulatie, N., Gebeyehu, S. 2022. Land use dynamics and driving forces in Farta District Northwest Ethiopia. GeoJournal. https://doi.org/10.1007/s10708-022-10746-w
- 27. Melvin, A.M., Larsen, P., Boehlert, B., Neumann, J.E., Chinowsky, P., Espinet, X., Martinich, J., Baumann, M.S., Rennels, L., Bothner, A., Nicolsky, D.J., Marchenko, S.S. 2017. Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. Proceedings of the National Academy of Sciences of the United States of America, 114(2), E122–E131. https://doi.org/10.1073/pnas.1611056113
- 28. Nave, L.E., DeLyser, K., Domke, G.M., Holub, S.M., Janowiak, M.K., Keller, A.B., Peters, M.P., Solarik, K.A., Walters, B.F., Swanston, C.W. 2024. Land use change and forest management effects on soil carbon stocks in the Northeast U.S. Carbon Balance and Management, 19(1). https://doi.org/10.1186/s13021-024-00251-7
- 29. Nave, L.E., DeLyser, K., Domke, G.M., Holub, S.M., Janowiak, M.K., Ontl, T.A., Sprague, E., Viau, N.R., Walters, B.F., Swanston, C.W. 2022. Soil carbon in the South Atlantic United States: Land use change, forest management, and physiographic context. Forest Ecology and Management, 520. https://doi.org/10.1016/j.foreco.2022.120410
- 30. Nichols, A. 2019. Climate change, natural hazards, and relocation: insights from Nabukadra and Navuniivi villages in Fiji. Climatic Change, 156(1–2), 255–271. https://doi.org/10.1007/s10584-019-02531-5
- 31. Obahoundje, S., Diedhiou, A. 2022. Potential impacts of climate, land use and land cover changes on hydropower generation in West Africa: A review. Environmental Research Letters, 17(4). https://doi.org/10.1088/1748-9326/ac5b3b
- 32. Salminah, M., Alviya, I., Ekawati, S., Salaka, F., Kartikasari, G., Subarudi, Bachri, A. 2020. Challenges of mangrove management in supporting climate change mitigation policy in East Kalimantan. IOP Conference Series: Earth and Environmental Science, 487(1). https://doi.org/10.1088/1755-1315/487/1/012009
- 33. Segundo, M.P., Pinto, A., Minetto, R., Torres, R.D.S., Sarkar, S. 2021. Measuring economic activity from space: a case study using flying airplanes and Covid-19. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7213–7224. https://doi.org/10.1109/JSTARS.2021.3094053
- 34. Soboka, D.M., Yimer, F. 2022. Restoration of degraded lands for carbon stock enhancement and climate change mitigation: the case of Rebu watershed, Woliso Woreda, Southwest Shoa, Ethiopia. Journal of Degraded and Mining Lands Management, 9(2), 3387–3396. https://doi.org/10.15243/jdmlm.2022.092.3387
- 35. Sovacool, B.K., Del Rio, D.F., Zhang, W. 2023. The political economy of net-zero transitions: Policy drivers, barriers, and justice benefits to decarbonization in eight carbon-neutral countries. Journal of Environmental Management, 347(June), 119154. https://doi.org/10.1016/j.jenvman.2023.119154
- 36. Stagakis, S., Feigenwinter, C., Vogt, R., Brunner, D., Kalberer, M. 2023. A high-resolution monitoring approach of urban CO2 fluxes. Part 2 – surface flux optimisation using eddy covariance observations. Science of the Total Environment, 903(July), 166035. https://doi.org/10.1016/j.scitotenv.2023.166035
- 37. Sutrisno, D., Darmawan, M., Helmi, M. 2021. Climate change, land use cover change and its impact on coastal area. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127425731&partnerID=40&md5=c92c223b8265f2d34af27943937fd3d8
- 38. Tepe, E., Guldmann, J.M. 2020. Spatio-temporal multinomial autologistic modeling of land-use change: A parcel-level approach. Environment and Planning B: Urban Analytics and City Science, 47(3), 473– 488. https://doi.org/10.1177/2399808318786511
- 39. Thagunna, R.S., Chhetri, S.G., Gautam, D., Bhattarai, D., Thapa, P.S. 2022. Climate change, climatic disasters, and adaptation techniques: learnings from the lowlands of Nepal. Banko Janakari, 32(1), 25– 40. https://doi.org/10.3126/banko.v32i1.45443
- 40. Utami, W., Sugiyanto, C., Rahardjo, N. 2024. Estimated changes in carbon stock due to changes in land use around Yogyakarta International Airport. Journal of Degraded and Mining Lands Management, 11(3), 5727– 5740. https://doi.org/10.15243/jdmlm.2024.113.5727
- 41. Varamesh, S., Hosseini, S.M., Behjou, F.K., Fataei, E. 2014. The impact of land afforestation on carbon stocks surrounding Tehran, Iran. Journal of Forestry Research, 25(1), 135–141. https://doi.org/10.1007/s11676-014-0438-1
- 42. Verma, D., Singh, V., Bhattacharya, P., Kishwan, J. 2020. Development, environmental impact and green growth: India. Ecology, Environment and Conservation, 26, S238–S244. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099239876&partnerID=40&md5=0b7cf0d2ed25d0fa0d9c2c6bce1764b6
- 43. Wang, S., Ping, C., Wang, N., Wen, J., Zhang, K., Yuan, K., Yang, J. 2022. Quantitatively determine the dominant driving factors of the spatial-temporal changes of vegetation-impacts of global change and human activity. Open Geosciences, 14(1), 568–589. https://doi.org/10.1515/geo-2022-0374
- 44. Weber, A. 1909. The theory of the location of industries. The University of Chicago Press, Chicago & London.
- 45. Wei, F., Xiang, M., Deng, L., Wang, Y., Li, W., Yang, S., Wu, Z. 2023. Spatiotemporal distribution characteristics and their driving forces of ecological service value in transitional geospace: a case study in the Upper Reaches of the Minjiang River, China. Sustainability (Switzerland), 15(19). https://doi.org/10.3390/su151914559
- 46. Wei, T., Yang, B., Wang, G., Yang, K. 2024. County land use carbon emission and scenario prediction in Mianyang Science and Technology City New District, Sichuan Province, China. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-60036-3
- 47. Weindl, I., Popp, A., Bodirsky, B.L., Rolinski, S., Lotze-Campen, H., Biewald, A., Humpenöder, F., Dietrich, J.P., Stevanović, M. 2017. Livestock and human use of land: Productivity trends and dietary choices as drivers of future land and carbon dynamics. Global and Planetary Change, 159, 1–10. https://doi.org/10.1016/j.gloplacha.2017.10.002
- 48. Wu R., Zhou S., Guo H., Wang S. 2024. Quantifying the teleconnections of carbon storage in contruction land and its socioeconomic driving forces in Guangdong Province. Journal of Cleaner Production, 456, 1–12, https://doi.org/10.1016/j.jclepro.2024.142390
- 49. Xiaoyu, Z., Gang, D., Xiaoping, X., Changliang, S., Dawei, X., Ruirui, Y., Lijun, X., Jing, Z., Chen, M., Ming, L. 2021. Divergent socioeconomic drivers of land use at various times in the Hulunber grassland area, China. Ecological Indicator, 132, 1–9. https://doi.org/10.10.1016/j.ecolind.2021.108243
- 50. Xie, B., Zhang, M. 2023. Spatio-temporal evolution and driving forces of habitat quality in Guizhou Province. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-33903-8
- 51. Xifeng, J., Junling, H., Qi, Z., Saitiniyazi, A. 2023. Evolution pattern and driving mechanism of eco-environmental quality in arid oasis belt – A case study of oasis core area in Kashgar Delta. Ecological Indicators, 154. https://doi.org/10.1016/j.ecolind.2023.110866
- 52. Xu, C., Zhang, Q., Yu, Q., Wang, J., Wang, F., Qiu, S., Ai, M., Zhao, J. 2023. Effects of land use/ cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China. Ecological Indicators, 151. https://doi.org/10.1016/j.ecolind.2023.110345
- 53. Yoo, C., Xiao, H., Zhong, Q.W., Weng, Q. 2024. Unequal impacts of urban industrial land expansion on economic growth and carbon dioxide emissions. Communications Earth and Environment, 5(1). https://doi.org/10.1038/s43247-024-01375-x
- 54. Zhou, Y., Li, X., Liu, Y. 2020. Land use change and driving factors in rural China during the period 1995-2015. Land Use Policy, 99. https://doi.org/10.1016/j.landusepol.2020.105048
- 55. Z Hoque, M., Islam, I., Ahmed, M., Hasan, S.S, Prodhan, A.F. 2022. Spatio-temporal changes of land use land cover and ecosystem service values in coastal Bangladesh. Egyptian Journal of Remote Sensing and Space Science, 25(1), 173–180. https://doi.org/10.1016/j.ejrs.2022.01
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ca6d389-9612-4451-be8d-367eecfbb930
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.