PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physicochemical properties and NH3-SCR catalytic performance of intercalated layered aluminosilicates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The representative of natural layered clays, bentonite, was modified according to two routes and tested as a new catalyst for selective catalytic reduction of nitrogen oxides with ammonia (NH3-SCR). The natural acid-activated clay was ion-exchanged with Na+ or remained in H-form and pillared with metal oxides. In order to limit the number of synthesis steps, iron as an active phase was introduced simultaneously with Al2O3 during the intercalation procedure. Additionally, the samples were doped with 0.5 wt% of copper to promote low-temperature activity. It was found that the performed modifications resulted in disorganization of the ordered layered arrangement of bentonite. Nevertheless, acid activation and pillaring improved structural and textural parameters. The results of catalytic tests indicated that the samples containing Fe2O3 pillars promoted with Cu exhibited the highest NO conversion of 85% at 250°C (H-Bent-AlFe-Cu) and 75% at 300°C (Na-Bent-AlFe-Cu). What is important, activity of the protonated samples in the high-temperature region was noticeably affected by the side reaction of ammonia oxidation, correlated with the production of NO and resulting in N2O emission during the process comparing to Na-Bentonite catalysts.
Słowa kluczowe
EN
Rocznik
Strony
art. no. 171381
Opis fizyczny
Bibliogr. 48 poz., tab., wykr.
Twórcy
  • Faculty of Energy and Fuels, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Instituto de Tecnología Química, Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Avd. de los Naranjos s/n, 46022 Valencia, Spain
  • Faculty of Energy and Fuels, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Faculty of Energy and Fuels, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • ADEYEMO, A. A., ADEOYE, I. O., BELLO, O. S. 2017. Adsorption of dyes using different types of clay: a review. Applied Water Science, 7(2), 543–568.
  • ARUS V.A., NOUSIR S., SENNOUR R, SHIAO T.C., NISTOR I.D, ROY R., AZZOUZ A., 2018. Intrinsic affinity of acid-activated bentonite towards hydrogen and carbon dioxide. Int. J. Hydrog. Energy 43(16), 7964-7972.
  • BARTH, J., JENTYS, A., KORNATOWSKI, J., LERCHER, J. A., AL, O., O, M. AL. 2004. Control of Acid - Base Properties of New Nanocomposite Derivatives of MCM-36 by Mixed Oxide Pillaring. 8, 724–730.
  • BERGAYA, F., AOUAD, A., MANDALIA, T. 2006. Chapter 7.5 Pillared Clays and Clay Minerals. Developments in Clay Science, 1(C), 393–421.
  • BERTELLA, F., PERGHER, S. B. C. 2015. Pillaring of bentonite clay with Al and Co. Microporous and Mesoporous Materials, 201(C), 116–123.
  • BOROŃ, P., CHMIELARZ, L., DZWIGAJ, S. 2015. Influence of Cu on the catalytic activity of FeBEA zeolites in SCR of NO with NH3. Applied Catalysis B: Environmental, 168–169, 377–384.
  • BRANDENBERGER S., KRÖCHER O., TISSLER A., ALTHOFF R., 2010. The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3. Appl. Catal. B Environ. 95, 348–357.
  • CARRIAZO, J. G., CENTENO, M. A., ODRIOZOLA, J. A., MORENO, S., MOLINA, R. 2007. Effect of Fe and Ce on Al-pillared bentonite and their performance in catalytic oxidation reactions. Applied Catalysis A: General (Vol. 317, Issue 1, pp. 120–128).
  • CATRINESCU, C., ARSENE, D., APOPEI, P., TEODOSIU, C. 2012. Degradation of 4-chlorophenol from wastewater through heterogeneous Fenton and photo-Fenton process, catalyzed by Al-Fe PILC. Applied Clay Science, 58(3), 96–101.
  • CHEN, D., CEN, C., FENG, J., YAO, C., LI, W., TIAN, S., XIONG, Y. 2016. Co-catalytic effect of Al-Cr pillared montmorillonite as a new SCR catalytic support. Journal of Chemical Technology and Biotechnology, 91(11), 2842–2851.
  • CHLUBNÁ, P., ROTH, W. J., ZUKAL, A., KUBU, M., J., J. P. 2012. Pillared MWW zeolites MCM-36 prepared by swelling MCM-22P in concentrated surfactant solitions. Catalysis Today, 179, 35–42.
  • CHMIELARZ, L., KOWALCZYK, A., MICHALIK, M., DUDEK, B., PIWOWARSKA, Z., MATUSIEWICZ, A. 2010. Acid-activated vermiculites and phlogophites as catalysts for the DeNOx process. Applied Clay Science, 49(3), 156–162.
  • CHMIELARZ, L., KOWALCZYK, A., SKOCZEK, M., RUTKOWSKA, M., GIL, B., NATKAŃSKI, P., RADKO, M., MOTAK, M., DĘBEK, R., RYCZKOWSKI, J. 2018. Porous clay heterostructures intercalated with multicomponent pillars as catalysts for dehydration of alcohols. Applied Clay Science, 160(July 2017), 116–125.
  • CHMIELARZ, L., KOWALCZYK, A., WOJCIECHOWSKA, M., BOROŃ, P., DUDEK, B., MICHALIK, M. 2014. Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process. Chemical Papers, 68(9), 1219–1227.
  • CHMIELARZ, L., KUŚTROWSKI, P., PIWOWARSKA, Z., MICHALIK, M., DUDEK, B., DZIEMBAJ, R. 2009. Natural micas intercalated with Al2O3 and Modified with transition metals as catalysts of the selective oxidation of ammonia to nitrogen. Topics in Catalysis (Vol. 52, Issue 8, pp. 1017–1022).
  • CHMIELARZ, L., RUTKOWSKA, M., JABŁOŃSKA, M., WEGRZYN, A., KOWALCZYK, A., BOROŃ, P., PIWOWARSKA, Z., MATUSIEWICZ, A. 2014. Acid-treated vermiculites as effective catalysts of high-temperature N2O decomposition. Applied Clay Science, 101, 237–245.
  • DE OLIVEIRA, C. I. R., ROCHA, M. C. G., DA SILVA, A. L. N., Bertolino, L. C. 2016. Characterization of bentonite clays from Cubati, Paraíba Northeast of Brazil. Ceramica, 62(363), 272–277.
  • GIL, A., KORILI, S. A., TRUJILLANO, R., VINCENTE, M. A. 2013. Pillared Clays and Related Catalysts.
  • GRZYBEK, T. 2007. Layered clays as SCR deNOx catalysts. Catalysis Today, 119(1–4), 125–132.
  • HAN, Z., YU, Q., LIU, J., ZUO, Z., LIU, K., XUE, Z., QIN, Q. 2019. Chromium, iron or zirconium oligomer cations pillared interlayered montmorillonite carrier supported MnOx for low-temperature selective catalytic reduction of NOx by NH3 in metallurgical sintering flue gas. Energy Sources, Part A: Recovery, Utilization and Environmental Effects.
  • HART, M. P., BROWN, D. R. 2004. Surface acidities and catalytic activities of acid-activated clays. Journal of Molecular Catalysis A: Chemical, 212(1–2), 315–321.
  • IBRAHIM, Y., MOHAMAD HARDYMAN, B., JAMES, M. 2021. Assessment of copper-iron catalyst supported on activated carbon for low-temperature nitric oxide reduction by hydrogen. IOP Conference Series: Earth and Environmental Science, 765(1).
  • KOMADEL, P. 2016. Acid activated clays: Materials in continuous demand. Applied Clay Science, 131, 84–99.
  • KUMAR, A., LINGFA, P. 2020. Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Materials Today: Proceedings, 22, 737–742.
  • LIN, Z., YANG, Y., LIANG, Z., ZENG, L., ZHANG, A. 2021. Preparation of chitosan/calcium alginate/bentonite composite hydrogel and its heavy metal ions adsorption properties. Polymers, 13(11).
  • LUCJAN CHMIELARZ, WOJCIECHOWSKA, M., RUTKOWSKA, M., ADAMSKI, A., WĘGRZYN, A., KOWALCZYK, A., DUDEK, B., BOROŃ, P., MICHALIK, M., MATUSIEWICZ, A. 2012. Acid-activated vermiculites as catalysts of DeNOx process. Catalysis Today, 191, 25–31.
  • MAGED, A., KHARBISH, S., ISMAEL, I. S., BHATNAGAR, A. 2020. Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from aqueous solution. Environmental Science and Pollution Research, 27(26), 32980–32997.
  • MOTAK, M. 2008. Montmorillonites modified with polymer and promoted with copper as DeNOx catalysts. Catalysis Today (Vol. 137, Issues 2–4, pp. 247–252).
  • MUÑOZ, H. J., BLANCO, C., GIL, A., VICENTE, M. ÁNGEL, GALEANO, L. A. 2017. Preparation of Al/Fe-pillared clays: Effect of the starting mineral. In Materials (Vol. 10, Issue 12).
  • ÖZCAN, A. S., ÖZCAN, A. 2004. Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite. Journal of Colloid and Interface Science (Vol. 276, Issue 1, pp. 39–46).
  • PALUSZKIEWICZ, C., HOLTZER, M., BOBROWSKI, A. 2008. FTIR analysis of bentonite in moulding sands. Journal of Molecular Structure, 880(1–3), 109–114.
  • RAHKAMAA-TOLONEN, K., MAUNULA, T., LOMMA, M., HUUHTANEN, M., KEISKI, R.L., 2005. The effect of NO2 on the activity of fresh and aged zeolite catalysis in the NH3-SCR reaction. Catal. Today 100, 217-222.
  • RHODES, C. N., BROWN, D. R. 1995. Autotransformation and ageing of acid-treated montmorillonite catalysts: A solid-state 27Al NMR study. Journal of the Chemical Society, Faraday Transactions, 91(6), 1031–1035.
  • SHATTAR, S. F. A., ZAKARIA, N. A., FOO, K. Y. 2020. One step acid activation of bentonite derived adsorbent for the effective remediation of the new generation of industrial pesticides. Scientific Reports, 10(1), 1–13.
  • ZHIHAO, S., SHUMING, W., HAN, W., YONGCHAO, M., XIAO, W., SHENGBING, M., QICHENG, F. 2023. Effect of dissolved components of malachite and calcite on surface properties and flotation behavior. International Journal of Minerals, Metallurgy and Materials, 30, 1297-1309.
  • SKALSKA, K., MILLER, J. S., Ledakowicz, S. 2010. Trends in NOx abatement: A review. Science of the Total Environment (Vol. 408, Issue 19, pp. 3976–3989).
  • STAWIŃSKI, W., FREITAS, O., CHMIELARZ, L., WĘGRZYN, A., KOMĘDERA, K., BŁACHOWSKI, A., FIGUEIREDO, S. 2016. The influence of acid treatments over vermiculite based material as adsorbent for cationic textile dyestuffs. Chemosphere, 153, 115–129.
  • SZYMASZEK, A., KUBEŁ, M., SAMOJEDEN, B., MOTAK, M. 2020. Modified bentonite-derived materials as catalysts for selective catalytic reduction of nitrogen oxides. Chemical and Process Engineering (Vol. 2020, Issue 1, pp. 13–24).
  • SZYMASZEK, A., SAMOJEDEN, B., MOTAK, M. (2020). The Deactivation of Industrial SCR Catalysts—A Short Review. Energies, 13(15), 3870.
  • TJONG, S.C., MENG, Y.Z. 2003, Impact-modified polypropylene/vermiculite nanocomposites. J. Polym. Sci. B Polym. Phys., 41, 2332-2341.
  • WATT, J. A. J., BURKE, I. T., EDWARDS, R. A., MALCOLM, H. M., MAYES, W. M., OLSZEWSKA, J. P., PAN, G., GRAHAM, M. C., HEAL, K. V., ROSE, N. L., TURNER, S. D., SPEARS, B. M. 2018. Vanadium: A Re-Emerging Environmental Hazard. Environmental Science and Technology, 52(21), 11973–11974.
  • WENJUAN, Z., BIN, Y., YAHUI, Y., QICHENG, F., DIANWEN, L. 2023. Synergistic activation of smithsonite with copper-ammonium species for enhancing surface reactivity and xanthate adsorption. International Journal of Mining Science and Technology, 33(4), 519-527.
  • YAMAMOTO, K., IKEDA, T., TSUKAMOTO, Y. 2021. Synthesis of a novel crystalline organic–inorganic hybrid material KCS-11, an ethanol-breathing pseudoporous layered aluminosilicate. Materials Letters, 288, 129332.
  • ZANIN, E., SCAPINELLO, J., DE OLIVEIRA, M., RAMBO, C. L., FRANSCESCON, F., FREITAS, L., DE MELLO, J. M. M., FIORI, M. A., OLIVEIRA, J. V., DAL MAGRO, J. 2017. Adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent. Process Safety and Environmental Protection, 105, 194–200.
  • ZHANG, T., LIU, J., WANG, D., ZHAO, Z., WEI, Y., CHENG, K., JIANG, G., DUAN, A. (2014). Selective catalytic reduction of NO with NH3 over HZSM-5-supported fe-cu nanocomposite catalysts: The fe-cu bimetallic effect. Applied Catalysis B: Environmental (Vols. 148–149, pp. 520–531).
  • ZHOU, C. H. 2011a. An overview on strategies towards clay-based designer catalysts for green and sustainable catalysis. Applied Clay Science, 53(2), 87–96.
  • ZHOU, C. H. 2011b. An overview on strategies towards clay-based designer catalysts for green and sustainable catalysis. Applied Clay Science, 53(2), 87–96.
  • ZI, W. W., ZHANG, J., CAI, X. S., JIAO, F., DU, H. BIN. 2020. Synthesis and characterization of a layered aluminosilicate NUD-11 and its transformation to a 3D stable zeolite. Dalton Transactions, 49(33), 11682–11688.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c9fcbab-14fd-41d1-924d-97a97904a5eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.