Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we prove the controllability of mild solutions of neutral functional evolution equations with state-dependent delay and nonlocal conditions. We establish the non local controllability of mild solutions under certain conditions by combining Avramescu’s nonlinear alternative for the sum of compact and contraction operators in Fréchet spaces with semigroup theory.
Czasopismo
Rocznik
Tom
Strony
117--148
Opis fizyczny
Bibliogr. 30 poz., wzory
Twórcy
autor
- Po. Box 89, Laboratory of Mathematics, Djillali LiabesUniversity of Sidi Bel-Abbès 22000, Algeria
autor
- Po. Box 89, Laboratory of Mathematics, Djillali LiabesUniversity of Sidi Bel-Abbès 22000, Algeria
Bibliografia
- [1] N. Abada, R.P. Agarwal, M. Benchohra and H. Hammouche. Existence results for non-densely defined impulsive semilinear functional differential equations with state-dependent delay. Asian-Eur. J. Math, 2008, 1(4), 449-468, DOI: 10.1142/s1793557108000382
- [2] R.P. Agarwal, S. Baghli and M. Benchohra: Controllability for semilinear functional and neutral functional evolution equations with infinite delay in Fréchet spaces. Applied Mathematics and Optimization, 60 (2009), 253-274, DOI: 10.1007/s00245-009-9073-1
- [3] N.U. Ahmed: Semigroup Theory with Applications to Systems and Control. Harlow John Wiley & Sons, Inc., New York, 1991.
- [4] N.U. Ahmed: Dynamic Systems and Control with Applications. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.
- [5] D. Aoued and S. Baghli-Bendimerad: Mild solution for perturbed evolution equations with infinite state-dependent delay. Electronic Journal of Qualitative Theory of Differential Equations, 59 (2013), 1-24, DOI: 10.14232/ejqtde.2013.1.59
- [6] D. Aoued and S. Baghli-Bendimerad: Controllability of mild solutions for evolution equations with infinite state-dependent delay. European Journal of Pure and Applied Mathematics, 9(4), (2016), 383-401.
- [7] A. Arara, M. Benchohra, L. Gorniewicz and A. Ouahab: Controllability results for semilinear functional differential incluisons with unbounded delay. Mathematical Bulletin of the Shevchenko Scientific Society, 3 (2006), 157-181.
- [8] C. Avramescu: Some remarks on a fixed point theorem of Krasnoselskii, Electronoc Journal of Qualitative Theory of Differential Equations, 5 (2003), 1-15, DOI: 10.14232/ejqtde.2003.1.5
- [9] S. Baghli-Bendimerad: Global mild solution for functional evolution inclusions with state-dependent delay. Journal of Advanced Research in Dynamical and Control Systems, 5(4), (2013), 1-19.
- [10] S. Baghli and M. Benchohra: Existence results for semilinear neutral functional differential equations involving evolution operators in Fréchet spaces. Georgian Mathematical Journal, 17(3), (2010), 423-436, DOI: 10.1515/gmj.2010.030
- [11] S. Baghli and M. Benchohra: Global uniqueness results for partial functional and neutral functional evolution equations with infinite delay. Differential Integral Equations, 23(1/2), (2010), 31-50.
- [12] S. Baghli and M. Benchohra: Multivalued evolution equations with infinite delay in Fréchet spaces. Electronic Journal of Qualitative Theory of Differential Equations, 33 (2008), 1-24, DOI: 10.14232/ejqtde.2008.1.33
- [13] S. Baghli and M. Benchohra: Perturbed functional and neutral functional evolution equations with infinite delay in Fréchet spaces. Electronic Journal of Differential Equations, 69 (2008), 1-19.
- [14] S. Baghli and M. Benchohra: Uniqueness results for partial functional differential equations in Fréchet spaces. Fixed Point Theory, 2(2), (2008), 395-406.
- [15] S. Baghli, M. Benchohra and K. Ezzinbi: Controllability results for semilinear functional and neutral functional evolution equations with infinite delay. Surveys in Mathematics and its Applications, 4(2), (2009), 15-39.
- [16] S. Baghli, M. Benchohra and J.J. Nieto: Global uniqueness results for partial functional and neutral functional evolution equations with state-dependent delay. Journal of Advanced Research, 2(3), (2010), 35-52.
- [17] M. Benchohra and S.K. Ntouyas: Existence of mild solutions on semiinfinite interval for first order differential equation with nonlocal condition. Commentationes Mathematicae Universitatis Carolinae, 41(3), (2000), 485-491.
- [18] L. Byszewski: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. Journal of Mathematical Analysis and Applications, 162 (1991), 494-505, DOI: 10.1016/0022-247x(91)90164-u
- [19] L. Byszewski and H. Akca: On a mild solution of a semilinear functional-differential evolution nonlocal problem. International Journal of Stochastic Analysis, 10 (1997), 265-271, DOI: 10.1155/s1048953397000336
- [20] R. Fiorenza: Hölder and locally Hölder Continuous Functions, and Open Sets of Class 𝐶𝑘, 𝐶𝑘, 𝜆. Birkhäuser, 2017.
- [21] X. Fu: Controllability of neutral functional differential systems in abstract space. Applied Mathematics and Computation, 141(2-3), (2003), 281-296. DOI: 10.1016/S0096-3003(02)00253-9
- [22] X. Fu: Controllability of abstract neutral functional differential systems with unbounded delay. Applied Mathematics and Computation, 151(2), (2004), 299-314, DOI: 10.1016/S0096-3003(03)00342-4
- [23] sc J. Hale and J. Kato: Phase space for retarded equations with infinite delay. Funkcialaj Ekvacioj, 21 (1978), 11-41.
- [24] E. Hernandez, R. Sakthivel and S. Tanaka Aki: Existence results for impulsive evolution differential equations with state-dependent delay. Electronic Journal of Differential Equations, 28 (2008), 1-11.
- [25] Y. Hino, S. Murakami and T. Naito: Functional Differential Equations with Unbounded Delay. Springer-Verlag, Berlin, 1991.
- [26] M.L. Li, M.S. Wang and X.L. Fu: Controllability of semilinear evolution equations with nonlocal conditions. Acta Mathematicae Applicatae Sinica, 21(4), (2005), 697-704, DOI: 10.1007/s10255-005-0277-0
- [27] A. Mebarki and S. Baghli-Bendimerad: Neutral multivalued integro-differential evolution equations with infinite state-dependent delay. Turkish Journal of Mathematics, 44 (2020), 2312-2329, DOI: 10.3906/mat-2007-66
- [28] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, 1983.
- [29] M.D. Quinn and N. Carmichael: An approach to nonlinear control problems using fixed point methods, degree theory and pseudo-inverses. Numerical Functional Analysis and Optimization, 7(2-3), (1985), 197-219, DOI: 10.1080/01630568508816189
- [30] J. Wu: Theory and Applications of Partial Functional Differential Equations. Applied Mathematical Sciences, 119, Springer-Verlag, New York, 1996.
Uwagi
This paper was supported by General Directorate for Scientific Research and Technological Development (DGRSDT), University-Training Research Projects: C00L03UN220120210002 PRFU 2021 project.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c99e25d-15c8-4a0a-a3ce-ceeab5b60748