Identyfikatory
Warianty tytułu
Model procesu spalania w 4-suwowym silniku okrętowym do oceny składu spalin
Języki publikacji
Abstrakty
The paper presents the model of combustion process in the marine, turbocharged, 4-stroke and Diesel engine. The main target of modeling is the assessment of the exhaust gas composition. Presented multi-zone, 3-D model of combustion process consists of the following sub-models of processes: the fuel injection, the brake-up and the evaporation of fuel and the turbulence flow and the heat transfer phenomena. Presented model basis on the 3Z-ECFM mechanism of combustion and the initial and boundary conditions collected during direct measurements. The positive validation of the calculation results are obtained for mean and maximum value of the combustion pressure and values of oxygen and nitric oxides fractions in the exhaust gas. Unfortunately, fractions of carbon compounds in the exhaust gas are not properly calculated.
Praca prezentuje model procesu spalania 4-suwowego, turbodoładowanego, okrętowego silnika o zapłonie samoczynnym. Celem modelowania była ocena składu emitowanych spalin. Model ten to wielostrefowy, trójwymiarowy model spalania, obejmujący proces wtrysku, rozpylania i parowania paliwa wraz z towarzyszącymi im zjawiskami turbulentnego przepływu i wymiany ciepła. Model oparty jest na mechanizmie procesu spalania 3Z-ECFM oraz warunkach początkowych i brzegowych, zebranych podczas pomiarów bezpośrednich. Uzyskano pozytywne wyniki walidacji w stosunku do średniego i maksymalnego ciśnienia spalania oraz zawartości tlenu i tlenków azotu w spalinach. Nie uzyskano poprawnych wyników modelowania dla udziałów związków węgla w spalinach.
Czasopismo
Rocznik
Tom
Strony
60--69
Opis fizyczny
Bibliogr. 32 poz., wykr.
Twórcy
autor
- Faculty of Marine Engineering at Gdynia Maritime University
Bibliografia
- [1] Arrègle J., López J.J., Garcı́a J.M., Fenollosa C. Development of a zero-dimensional Diesel combustion model, Appl Therm Eng. 2003;23(11):1319-1331. doi:10.1016/S1359-4311(03)00080-2.
- [2] Brusiani F., Falfari S., Pelloni P. Influence of the Diesel Injector Hole Geometry on the Flow Conditions Emerging from the Nozzle, Energy Procedia (2014) 45, 749-758.
- [3] Colin O., Benkeida A. The 3-Zones Extended Coherent Flame Model (ECFM3Z) for Computing Premixed/Diffusion Combustion, Oil & Gas Science and Technology 59-6 (2004), 593-609.
- [4] Dukowicz J.K. Quasi-steady droplet change in the presence of Convection, Informal Report Los Alamos Scientific Laboratory. LA7997-MS.
- [5] Eaton A.M, Smoot L.D., Hill S.C., Eatough C.N. Components, formulations, solutions, evaluation, and application of comprehensive combustion models, Prog Energy Combust Sci. 1999;25(4):387-436. doi:10.1016/S0360-1285(99)00008-8.
- [6] Fushui L., Lei Z., Baigang S., Zhijie L., Schock H.J. Validation and modification of WAVE spray model for diesel combustion simulation, Fuel 87 (2008) 15-16, 3420-3427.
- [7] Ghojel J., Honnery D. Heat release model for the combustion of diesel oil emulsions in DI diesel engines, Appl Therm Eng. 2005;25(14-15):2072-2085. doi:10.1016/j.applthermaleng.2005.01.016.
- [8] Hanjalić K., Popovac M., Hadžiabdić M. A robust near-wall elliptic relaxation eddy-viscosity turbulence model for CFD, International Journal of Heat and Fluid Flow 25-6 (2004) 1047-1051.
- [9] Heywood J.B. Internal Combustion Engine Fundamentals, McGraw-Hill, 1988.
- [10] Jurdziński M. Planowanie efektywności energetycznej statków morskich. Prace Wydziału Nawigacyjnego Akademii Morskiej w Gdyni, 2013; 28:5–10.
- [11] Kaludercic B. Parallelisation of the Lagrangian model in a mixed Eulerian–Lagrangian CFD algorithm, J Parallel Distrib Comput. 64-2 (2004) 277-284.
- [12] Kowalski J. An experimental study of emission and combustion characteristics of marine diesel engine with fuel Injector malfunctions, Polish Maritime Research, 23 (2016) 1, 77-84. doi.org/10.1515/pomr-2016-0011.
- [13] Kowalski J. An experimental study of emission and combustion characteristics of marine diesel engine in case of cylinder val-ves leakage, Polish Maritime Research, 22 (2015) 3, 90-98. doi.org/10.1515/pomr-2015-0061.
- [14] Kowalski J. An experimental study of emission and combustion characteristics of marine diesel engine with fuel pump malfunctions, Applied Thermal Engineering, 65 (2014) 469-476. doi: 10.1016/j.applthermaleng.2014.01.028.
- [15] Kowalski J. Analiza parametrów rozpylania i parowania paliwa z wtryskiwacza 4-suwowego silnika okrętowego, Zeszyty Naukowe AM. (2014) 83, 98-109.
- [16] Kowalski J., Jaworski P. 3D mesh model for RANS numerical research on marine 4-stroke engine, Journal of Polish CIMAC. 9 (2014) 1, 87-94.
- [17] Kuo K.K. Principles of combustion, Wiley. New Jersey 2005.
- [18] Mohamed Ismail H., Ng H.K., Gan S. Evaluation of non-premixed combustion and fuel spray models for in-cylinder diesel engine simulation, Appl Energy. 2012;90(1):271-279. doi:10.1016/j.apenergy.2010.12.075.
- [19] Moon S., Bae C., Choi J., Abo-Serie E. The influence of airflow on fuel spray characteristics from a slit injector, Fuel 86 (2007) 3, 400-409.
- [20] Park S.W., Reitz R.D., A gas jet superposition model for CFD modeling of group-hole nozzle sprays, Int J Heat Fluid Flow 30 (2009) 6, 1193-1201.
- [21] Pastor J., Javierlopez J., Garcia J. A 1D model for the description of mixing-controlled inert diesel sprays, Fuel 87 (2008) 13-14, 2871-2885.
- [22] Poinsot T., Veynante D. Theoretical and numerical combustion, Edwards 2005.
- [23] Rakopoulos C.D., Antonopoulos K., Rakopoulos D.C., Hountalas D.T. Multi-zone modeling of combustion and emissions formation in DI diesel engine operating on ethanol–diesel fuel blends. Energy Convers Manag. 2008;49(4):625-643. doi:10.1016/j.enconman.2007.07.035.
- [24] Rakopoulos C.D., Antonopoulos K., Rakopoulos D.C. Development and application of multi-zone model for combustion and pollutants formation in direct injection diesel engine running with vegetable oil or its bio-diesel, Energy Convers Manag. 2007;48(7):1881-1901. doi:10.1016/j.enconman.2007.01.026.
- [25] Şahin Z., Durgun O. Multi-zone combustion modeling for the prediction of diesel engine cycles and engine performance parameters, Appl Therm Eng. 2008;28(17-18):2245-2256. doi:10.1016/j.applthermaleng.2008.01.002.
- [26] Samimi Abianeh O., Chen CP. A discrete multicomponent fuel evaporation model with liquid turbulence effects, Int J Heat Mass Transf. 55 (2012) 23-24, 6897-6907.
- [27] Soid S.N., Zainal Z.A. Spray and combustion characterization for internal combustion engines using optical measuring techniques – A review, Energy 36 (2011) 2, 724-741.
- [28] Varol Y., Oztop H.F., Firat M., Koca A. CFD modeling of heat transfer and fluid flow inside a pent-roof type combustion chamber using dynamic model, Int Commun Heat Mass Transf. 2010;37(9):1366-1375. doi:10.1016/j.icheatmasstransfer.2010.07.003.
- [29] Wakisaka T. et al. Numerical Prediction of Mixture Formation and Combustion Processes in Premixed Compression Ignition Engines, COMODIA (2001) 426.
- [30] Załącznik VI do konwencji MARPOL 73/78. Przepisy o zapobieganiu zanieczyszczeniu powietrza przez statki oraz kodeks techniczny NOx, Wydawnictwa Polskiego Rejestru Statku. Gdańsk 2000.
- [31] Zhou P., Zhou S., Clelland D. A modified quasi-dimensional multi-zone combustion model for direct injection diesels, Int J Engine Res. 2006;7(4):335-345. doi: 10.1243/14680874JER02604.
- [32] Zienkiewicz O.C., Taylor R.L. Finite Element Method, Vol. 3 – Fluid Dynamics. Fifth Edition, Butterworth-Heinemann. Oxford 2000.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c9819c7-2728-4f1d-9b9d-1400cf0b21b5