PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Static stability analysis of mass sensors consisting of hygro-thermally activated graphene sheets using a nonlocal strain gradient theory

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper develops a nonlocal strain gradient plate model for buckling analysis of graphene sheets under hygro-thermal environments with mass sensors. For a more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. The graphene sheet is modeled via a two-variable shear deformation plate theory that does not need shear correction factors. Governing equations of a nonlocal strain gradient graphene sheet on the elastic substrate are derived via Hamilton’s principle. Galerkin’s method is implemented to solve the governing equations for different boundary conditions. Effects of different factors, such as moisture concentration rise, temperature rise, nonlocal parameter, length scale parameter, nanoparticle mass and geometrical parameters, on buckling characteristics of graphene sheets are examined and presented as dispersion graphs.
Rocznik
Strony
269--295
Opis fizyczny
Bibliogr. 62 poz., rys., tab., wykr.
Twórcy
  • Department of Mathematics Karunya Institute of Technology and Sciences Coimbatore-641114, Tamil Nadu, India
  • Department of Mathematics Karunya Institute of Technology and Sciences Coimbatore-641114, Tamil Nadu, India
  • Department of Mechanical Engineering Imam Khomieni International University
Bibliografia
  • 1. Lim C.W., Zhang G., Reddy J.N., A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, Journal of the Mechanics and Physics of Solids, 78: 298–313, 2015, doi: 10.1016/j.jmps.2015.02.001.
  • 2. Eringen A.C., Edelen D.G.B., On nonlocal elasticity, International Journal of Engineering Science, 10(3): 233–248, 1972, doi: 10.1016/0020-7225(72)90039-0.
  • 3. Eringen A.C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, International Journal of Applied Physics, 54(9): 4703–4710, 1983, doi: 10.1063/1.332803.
  • 4. Hashemi S.H., Samaei A.T., Buckling analysis of micro/nanoscale plates via nonlocal elasticity theory, Physica E: Low-dimensional Systems and Nanostructures, 43(7): 1400– 1404, 2011, doi: 10.1016/j.physe.2011.03.012.
  • 5. Kheroubi B., Benzair A., Tounsi A., Semmah A., A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams, Advances in Nano Research, 4(4): 251–264, 2016, doi: 10.12989/anr.2016.4.4.251.
  • 6. Ebrahimi F., Daman M., Analytical investigation of the surface effects on nonlocal vibration behavior of nanosize curved beams, Advances in Nano Research, 5(1): 35–47, 2017, doi: 10.12989/anr.2017.5.1.035.
  • 7. Rakrak K., Zidour M., Heireche H., Bousahla A.A., Chemi A., Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory, Advances in Nano Research, 4(1): 31–44, 2016, doi: 10.12989/anr.2016.4.1.031.
  • 8. Aydogdu M., Arda M., Filiz S., Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter, Advances in Nano Research, 6(3): 257–278, 2018, doi: 10.12989/anr.2018.6.3.257.
  • 9. Elmerabet A.H., Heireche H., Tounsi A., Semmah A., Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model, Advances in Nano Research, 5(1): 1–12, 2017, doi: 10.12989/anr.2017.5.1.001.
  • 10. Pradhan S.C., Murmu T., Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics, Computational Materials Science, 47(1): 268–274, 2009, doi: 10.1016/j.commatsci.2009.08.001.
  • 11. Pradhan S.C., Kumar A., Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method, Composite Structures, 93(2): 774–779, 2011, doi: 10.1016/j.compstruct.2010.08.004.
  • 12. Aksencer T., Aydogdu M., Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory, Physica E: Low-dimensional Systems and Nanostructures, 43(4), 954–959, 2011, doi: 10.1016/j.physe.2010.11.024.
  • 13. Mohammadi M., Farajpour A., Moradi A., Ghayour M., Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, 56: 629–637, 2014, doi: 10.1016/ j.compositesb.2013.08.060.
  • 14. Mohammadi M., Goodarzi M., Ghayour M., Farajpour A., Influence of inplane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory, Composites Part B: Engineering, 51: 121–129, 2013, doi: 10.1016/ j.compositesb.2013.02.044.
  • 15. Ansari R., Arash B., Rouhi H., Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity, Composite Structures, 93(9): 2419–2429, 2011, doi: 10.1016/j.compstruct.2011.04.006.
  • 16. Shen Z-B., Tang H-L., Li D-K., Tang G-J., Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory, Computational Materials Science, 61: 200–205, 2012, doi: 10.1016/j.commatsci.2012.04.003.
  • 17. Farajpour A., Shahidi A.R., Mohammadi M., Mahzoon M., Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, 94(5): 1605–1615, 2012, doi: 10.1016/ j.compstruct.2011.12.032.
  • 18. Ansari R., Sahmani S., Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations, Applied Mathematical Modelling, 37(12–13): 7338–7351, 2013, doi: 10.1016/ j.apm.2013.03.004.
  • 19. Sobhy M., Thermomechanical bending and free vibration of single-layered graphene sheets embedded in an elastic medium, Physica E: Low-dimensional Systems and Nanostructures, 56: 400–409, 2014, doi: 10.1016/j.physe.2013.10.017.
  • 20. Ebrahimi F., Barati M.R., An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams, Advances in Nano Research, 4(2): 65–84, 2016, doi: 10.12989/anr.2016.4.2.065.
  • 21. Ehyaei J., Daman M., Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection, Advances in Nano Research, 5(2): 179–192, 2017, doi: 10.12989/anr.2017.5.2.179.
  • 22. Narendar S., Gopalakrishnan S., Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory, Acta Mechanica, 223(2): 395–413, 2012, doi: 10.1007/s00707-011-0560-5.
  • 23. Murmu T., Mccarthy M. A., Adhikari S., In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach, Composite Structures, 96: 57–63, 2013, doi: 10.1016/j.compstruct.2012.09.005.
  • 24. Bessaim A., Houari M.S.A., Bernard F., Tounsi A., A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates, Structural Engineering and Mechanics, 56(2): 223–240, 2015, doi: 10.12989/sem.2015.56.2.223.
  • 25. Hashemi S.H., Mehrabani H., Ahmadi-Savadkoohi A., Exact solution for free vibration of coupled double viscoelastic graphene sheets by viscoPasternak medium, Composites Part B: Engineering, 78: 377–383, 2015, doi: 10.1016/j.compositesb.2015.04.008.
  • 26. Ebrahimi F., Shafiei N., Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy’s higherorder shear deformation plate theory, Mechanics of Advanced Materials and Structures, 24(9): 761–772, 2016, doi: 10.1080/15376494.2016.1196781.
  • 27. Jiang R.W., Shen Z.B., Tang G.J., Vibration analysis of a single-layered graphene sheet-based mass sensor using the Galerkin strip distributed transfer function method, Acta Mechanica, 227(10): 2899–2910, 2016, doi: 10.1007/s00707-016-1649-7.
  • 28. Arani A.G., Haghparast E., Zarei H.B., Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field, Physica B: Condensed Matter, 495: 35–49, 2016, doi: 10.1016/ j.physb.2016.04.039.
  • 29. Aslanyan N.S., Sargsyan S.H., Applied theories of thermoelasticity of micropolar thin beams, Journal of Thermal Stresses, 41(6): 687–705, 2018, doi: 10.1080/ 01495739.2018.1426066.
  • 30. Bachiri A., Bourada M., Mahmoudi A., Benyoucef S., Tounsi A., Thermodynamic effect on the bending response of elastic foundation FG plate by using a novel four variable refined plate theory, Journal of Thermal Stresses, 41(8): 1042–1062, 2018, doi: 10.1080/01495739.2018.1452169.
  • 31. Cinefra M., Petrolo M., Li G., Carrera E., Variable kinematic shell elements for composite laminates accounting for hygrothermal effects, Journal of Thermal Stresses, 40(12): 1523–1544, 2017, doi: 10.1080/01495739.2017.1360165.
  • 32. Jaiani G., Bitsadze L., Basic problems of thermoelasticity with microtemperatures for the half-space, Journal of Thermal Stresses, 41(9): 1101–1114, 2018, doi: 10.1080/01495739.2018.1464415.
  • 33. Khdeir A.A., Thermoelastic response of cross-ply laminated shells based on a rigorous shell theory, Journal of Thermal Stresses, 35(11): 1000–1017, 2012, doi: 10.1080/ 01495739.2012.720219.
  • 34. Mirzaei M., Thermal buckling of temperature-dependent composite super elliptical plates reinforced with carbon nanotubes, Journal of Thermal Stresses, 41(7): 920–935, 2018, doi: 10.1080/01495739.2018.1429969.
  • 35. Vinyas M., Kattimani S.C., Joladarashi S., Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods, Journal of Thermal Stresses, 41(8): 1063–1079, 2018, doi: 10.1080/01495739.2018.1447856.
  • 36. Kurtinaitiene M., Mazeika K., Ramanavicius S., Pakstas V., Jagminas A., Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles, Advances in Nano Research, 4(1): 1–14, 2016, doi: 10.12989/anr.2016.4.1.001.
  • 37. Ebrahimi F., Babaei R., Shaghaghi G.R., Vibration analysis thermally affected viscoelastic nanosensors subjected to linear varying loads, Advances in Nano Research, 6(4): 399–422, 2018, doi: 10.12989/anr.2018.6.4.399.
  • 38. Ebrahimi F., Habibi S., Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment, Advances in Nano Research, 5(2): 69–97, 2017, doi: 10.12989/anr.2018.6.4.399.
  • 39. Sobhy M., Hygrothermal vibration of orthotropic double-layered graphene sheets embedded in an elastic medium using the two-variable plate theory, Applied Mathematical Modelling, 40(1): 85–99, 2016, doi: 10.1016/j.apm.2015.04.037.
  • 40. Zenkour A.M., Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium, Physica E: Low-dimensional Systems and Nanostructures, 79: 87–97, 2016, doi: 10.1016/j.physe.2015.12.003.
  • 41. Aydogdu M., Filiz S., Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity, Physica E: Low-dimensional Systems and Nanostructures, 43(6): 1229–1234, 2011, doi: 10.1016/j.physe.2011.02.006.
  • 42. Sakhaee-Pour A., Ahmadian M.T., Vafai A., Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors, Solid State Communications, 145(4): 168–172, 2008, doi: 10.1016/j.ssc.2007.10.032.
  • 43. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P., Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51(8): 1477– 1508, 2003, doi: 10.1016/S0022-5096(03)00053-X.
  • 44. Li L., Hu Y., Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory, Computational Materials Science, 112(Part A): 282– 288, 2016, doi: 10.1016/j.commatsci.2015.10.044.
  • 45. Li L., Hu Y., Li X., Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory, International Journal of Mechanical Sciences, 115–116: 135–144, 2016, doi: 10.1016/j.ijmecsci.2016.06.011.
  • 46. Ebrahimi F., Barati M.R., Vibration analysis of nonlocal beams made of functionally graded material in thermal environment,The European Physical Journal Plus, 131(8): 279, 2016, doi: 10.1140/epjp/i2016-16279-y.
  • 47. Ebrahimi F., Barati M.R., A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment, Applied Physics A, 122(9): 792, 2016, doi: 10.1007/s00339-016-0322-2.
  • 48. Ebrahimi F., Barati M.R., A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures, International Journal of Engineering Science, 107: 183–196, 2016, doi: 10.1016/j.ijengsci.2016.08.001.
  • 49. Ebrahimi F., Barati M.R., Hygrothermal buckling analysis of magnetically actuated embedded higher order functionally graded nanoscale beams considering the neutral surface position, Journal of Thermal Stresses, 39(10): 1210–1229, 2016, doi: 10.1080/01495739.2016.1215726.
  • 50. Ebrahimi F., Barati M.R., Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment, Journal of Vibration and Control, 24(3): 549–564, 2018, doi: 10.1177/1077546316646239.
  • 51. Ebrahimi F., Barati M.R., Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory, Smart Materials and Structures, 25(10): 105014, 2016, doi: 10.1088/0964- 1726/25/10/105014.
  • 52. Ebrahimi F., Barati M.R., Size-dependent dynamic modeling of inhomogeneous curved nanobeams embedded in elastic medium based on nonlocal strain gradient theory, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(23): 4457–4469, 2017, doi: 10.1177/0954406216668912.
  • 53. Ebrahimi F., Barati M.R., Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory, Composite Structures, 159: 433–444, 2017, doi: 10.1016/j.compstruct.2016.09.092.
  • 54. Ebrahimi F., Barati M.R., A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams, Composite Structures, 159: 174–182, 2017, doi: 10.1016/j.compstruct.2016.09.058.
  • 55. Ebrahimi F., Barati M.R., Dabbagh A., A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates, International Journal of Engineering Science, 107: 169–182, 2016, doi: 10.1016/j.ijengsci.2016.07.008.
  • 56. Ebrahimi F., Barati M.R., Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory, Applied Physics A, 122(9): 843, 2016, doi: 10.1007/s00339-016-0368-1.
  • 57. Ebrahimi F., Jafari A., Selvamani R., Thermal buckling analysis of magneto electro elastic porous FG beam in thermal environment, Advances in Nano Research, 8(1): 83–94, 2020, doi: 10.12989/anr.2020.8.1.083.
  • 58. Ebrahimi F., Karimiasl M., Selvamani R., Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading, Advances in Nano Research, 8(3): 203–214, 2020, doi: 10.12989/anr.2020.8.3.203.
  • 59. Ebrahimi F., Kokaba M., Shaghaghi G., Selvamani R., Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions, Advances in Nano Research, 8(2): 169–182, 2020, doi: 10.12989/anr.2020.8.2.169.
  • 60. Ebrahimi F., Hosseini S.H.S., Selvamani R., Thermo-electro-elastic nonlinear stability analysis of viscoelastic double-piezo nanoplates under magnetic field, Structural Engineering and Mechanics, 73(5): 565–584, 2020, doi: 10.12989/sem.2020.73.5.565.
  • 61. Selvamani R., Ebrahimi F., Axisymmetric vibration in a submerged, piezoelectric rod coated with thin film, [in:] Applied Mathematics and Scientific Computing. International Conference on Advances in Mathematical Sciences, Vellore, India, December 2017 – Vol. II, Book Series: Trends in Mathematics, B. Rushi Kumar, R. Sivaraj, B.S.R.V. Prasad, M. Nalliah, A. Subramanyam Reddy [Eds.], Springer International Publishing, 2019, doi: 10.1007/978-3-030-01123-9_21.
  • 62. Ebrahimi F., Salari E., Thermo-mechanical vibration analysis of a single-walled carbon nanotube embedded in an elastic medium based on higher-order shear deformation beam theory, Journal of Mechanical Science and Technology, 29(9): 3797–3803, 2015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c962e5a-7557-43f3-8596-774322843688
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.