PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inconel-steel functionally bimetal materials by hybrid directed energy deposition and thermal milling: Microstructure and mechanical properties

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many engineering applications, particularly those in extreme environments, require com-ponents with properties that vary with location in the part. Functionally bimetal materials (FBM) that combine dissimilar materials, such as those with different density and thermal properties, provide a potential solution to this need. Directed energy deposition (DED) is convenient to fabricate all kinds of complicated parts and to clad different materials at specific locations. Milling can improve the surface quality and dimensional accuracy after DED. Hybrid DED and thermal milling manufacturing can fabricate FBMs and be applied to laser repair. This study used this new method to fabricate Inconel-steel FBM. Inconel 718 powder and 316L stainless steel powder were deposited on the thermal milling surface of parts prepared with DED. The interfacial characteristics of different cladding materials were compared. Microstructure, chemistry, phase composition, element segregation and micro-hardness varied with position and were characterized by energy dispersive spectroscopy, X-ray diffraction, scanning electron microscopy and microhardness testing. Finally, the tensile properties of the FBM were compared to other materials, and the fracture location and morphology were analyzed. The results showed that the yield strength (YS) reached 368 MPa, and the ultimate tensile strength (UTS) reached 516 MPa. The Vickers microhard-ness of the diffusion layer was approximately 250 HV.
Rocznik
Strony
820--831
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • Northeastern University, Shenyang, China
autor
  • Northeastern University, Shenyang, China
autor
  • Northeastern University, Shenyang, China
autor
  • Northeastern University, Shenyang, China
autor
  • Northeastern University, Shenyang, China
autor
  • Northeastern University, Shenyang, China
Bibliografia
  • [1] M. Koizumi, FGM activities in Japan, Compos. Part B Eng. 28 (1997) 1–4. , http://dx.doi.org/10.1016/S1359-8368(96)00016-9.
  • [2] S.L. Sing, L.P. Lam, D.Q. Zhang, Z.H. Liu, C.K. Chua, Interfacial characterization of SLM parts in multi-material processing: intermetallic phase formation between AlSi10Mg and C18400 copper alloy, Mater. Charact. 107 (2015) 220–227. , http://dx. doi.org/10.1016/j.matchar.2015.07.007.
  • [3] X. Chen, W. Sun, X. Li, X. Wang, H. Yan, K. Li, Experimental and numerical studies on W–Cu functionally graded materials produced by explosive compaction–welding sintering, Fusion Eng. Des. 137 (2018) 349–357. , http://dx. doi.org/10.1016/j.fusengdes.2018.10.016.
  • [4] Z. Xiao, J. Fang, G. Sun, Q. Li, Crashworthiness design for functionally graded foam-filled bumper beam, Adv. Eng. Softw. 85 (2015) 81–95. , http://dx.doi.org/10.1016/j. advengsoft.2015.03.005.
  • [5] A. Bandyopadhyay, B.V. Krishna, W. Xue, S. Bose, Application of Laser Engineered Net Shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants, J. Mater. Sci. Mater. Med. 20 (2009), http://dx.doi.org/ 10.1007/s10856-008-3478-2.
  • [6] J. Kar, S.K. Roy, G.G. Roy, Effect of beam oscillation on electron beam welding of copper with AISI-304 stainless steel, J. Mater. Process. Technol. 233 (2016) 174–185. , http://dx.doi.org/ 10.1016/j.jmatprotec.2016.03.001.
  • [7] C. Yao, B. Xu, X. Zhang, J. Huang, J. Fu, Y. Wu, Interface microstructure and mechanical properties of laser welding copper-steel dissimilar joint, Opt. Lasers Eng. 47 (2009) 807– 814. , http://dx.doi.org/10.1016/j.optlaseng.2009.02.004.
  • [8] F. Wang, G.-N. Luo, J. Huang, Y. Liu, Properties improvement of atmospheric plasma sprayed tungsten coating by annealing, Surf. Coatings Technol. (2018), http://dx.doi.org/ 10.1016/j.surfcoat.2018.11.046.
  • [9] C. Tan, K. Zhou, W. Ma, L. Min, Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture, Mater. Des. 155 (2018) 77–85. , http://dx.doi.org/ 10.1016/j.matdes.2018.05.064.
  • [10] K. Shah, I. ul Haq, A. Khan, S.A. Shah, M. Khan, A.J. Pinkerton, Parametric study of development of Inconel-steel functionally graded materials by laser direct metal deposition, Mater. Des. 54 (2014) 531–538. , http://dx.doi.org/ 10.1016/j.matdes.2013.08.079.
  • [11] T. Rong, D. Gu, Formation of novel graded interface and its function on mechanical properties of WC1-xreinforced Inconel 718 composites processed by selective laser melting, J. Alloys Compd. 680 (2016) 333–342. , http://dx.doi. org/10.1016/j.jallcom.2016.04.107.
  • [12] T.T. Qian, D. Liu, X.J. Tian, C.M. Liu, H.M. Wang, Microstructure of TA2/TA15 graded structural material by laser additive manufacturing process, Trans. Nonferrous Met. Soc. China (English Ed.) 24 (2014) 2729–2736. , http://dx.doi. org/10.1016/S1003-6326(14)63404-X.
  • [13] Y. Sun, Y. Gong, Y. Liu, M. Cai, X. Ma, P. Li, Experimental investigation on effects of machining parameters on the performance of Ti–6Al–4V micro rotary parts fabricated by LS-WEDT, Arch. Civ. Mech. Eng. 18 (2018) 385–400. , http://dx. doi.org/10.1016/j.acme.2017.09.006.
  • [14] C. Ni, L. Zhu, C. Liu, Z. Yang, Analytical modeling of tool-workpiece contact rate and experimental study in ultrasonic vibration-assisted milling of Ti–6Al–4V, Int. J. Mech. Sci. 142–143 (2018) 97–111. , http://dx.doi.org/10.1016/j.ijmecsci.2018.04.037.
  • [15] D.C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R.P. Dillon, J. O. Suh, Z.K. Liu, J.P. Borgonia, Compositionally graded metals: a new frontier of additive manufacturing, J. Mater. Res. 29 (2014) 1899–1910. , http://dx.doi.org/10.1557/jmr.2014.208.
  • [16] B.E. Carroll, R.A. Otis, J.P. Borgonia, J.O. Suh, R.P. Dillon, A.A. Shapiro, D.C. Hofmann, Z.K. Liu, A.M. Beese, Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: characterization and thermodynamic modeling, Acta Mater. 108 (2016) 46–54. , http://dx.doi.org/10.1016/j.actamat.2016.02.019.
  • [17] M. Akbari, R. Kovacevic, An investigation on mechanical and microstructural properties of 316LSi parts fabricated by a robotized laser/wire direct metal deposition system, Addit. Manuf. 23 (2018) 487–497. , http://dx.doi.org/10.1016/J. ADDMA.2018.08.031.
  • [18] S. Cissé, L. Laffont, B. Tanguy, M.C. Lafont, E. Andrieu, Effect of surface preparation on the corrosion of austenitic stainless steel 304L in high temperature steam and simulated PWR primary water, Corros. Sci. 56 (2012) 209–216. , http://dx.doi. org/10.1016/j.corsci.2011.12.007.
  • [19] Y. Chen, K. Zhang, J. Huang, S.R.E. Hosseini, Z. Li, Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718, Mater. Des. 90 (2016) 586–594. , http://dx.doi.org/10.1016/j. matdes.2015.10.155.
  • [20] J.L. Robinson, M.H. Scott, Liquation cracking during the welding of austenitic stainless steels and nickel alloys, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 295 (1980) 105– 117. , http://dx.doi.org/10.1098/rsta.1980.0079.
  • [21] X. Lin, T.M. Yue, Phase formation and microstructure evolution in laser rapid forming of graded SS316L/Rene88DT alloy, Mater. Sci. Eng. A. 402 (2005) 294–306. , http://dx.doi.org/ 10.1016/j.msea.2005.05.024.
  • [22] T. Rong, D. Gu, Q. Shi, S. Cao, M. Xia, Effects of tailored gradient interface on wear properties of WC/Inconel 718 composites using selective laser melting, Surf. Coatings Technol. 307 (2016) 418–427. , http://dx.doi.org/10.1016/j. surfcoat.2016.09.011.
  • [23] S. Chen, J. Huang, J. Xia, X. Zhao, S. Lin, Influence of processing parameters on the characteristics of stainless steel/copper laser welding, J. Mater. Process. Technol. 222 (2015) 43–51. , http://dx.doi.org/10.1016/j.jmatprotec.2015.03.003.
  • [24] D.C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R.P. Dillon, J. O. Suh, A.A. Shapiro, Z.K. Liu, J.P. Borgonia, Developing gradient metal alloys through radial deposition additive manufacturing, Sci. Rep. 4 (2014), http://dx.doi.org/10.1038/ srep05357.
  • [25] J.M. Flynn, A. Shokrani, S.T. Newman, V. Dhokia, Hybrid additive and subtractive machine tools - Research and industrial developments, Int. J. Mach. Tools Manuf. 101 (2016) 79–101. , http://dx.doi.org/10.1016/j.ijmachtools.2015.11.007.
  • [26] Q. Jia, D. Gu, Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties, J, Alloys Compd. 585 (2014) 713–721. , http:// dx.doi.org/10.1016/j.jallcom.2013.09.171.
  • [27] H. Xiao, S.M. Li, W.J. Xiao, Y.Q. Li, L.M. Cha, J. Mazumder, L.J. Song, Effects of laser modes on Nb segregation and Laves phase formation during laser additive manufacturing of nickel-based superalloy, Mater. Lett. 188 (2017) 260–262. , http://dx.doi.org/10.1016/j.matlet.2016.10.118.
  • [28] P. Nie, O.A. Ojo, Z. Li, Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel- based superalloy, Acta Mater. 77 (2014) 85–95. , http://dx.doi. org/10.1016/j.actamat.2014.05.039.
  • [29] H. Qi, M. Azer, A. Ritter, Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured INCONEL 718, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 40 (2009) 2410–2422. , http://dx.doi. org/10.1007/s11661-009-9949-3.
  • [30] K. Zhang, S. Wang, W. Liu, X. Shang, Characterization of stainless steel parts by laser metal deposition shaping, Mater. Des. 55 (2014) 104–119. , http://dx.doi.org/10.1016/j. matdes.2013.09.006.
  • [31] J.W. Elmer, S.M. Allen, T.W. Eagar, Microstructural development during solidification of stainless steel alloys, Metall. Trans. A. 20 (1989) 2117–2131. , http://dx.doi.org/ 10.1007/BF02650298.
  • [32] M. Shakil, M. Ahmad, N.H. Tariq, B.A. Hasan, J.I. Akhter, E. Ahmed, M. Mehmood, M.A. Choudhry, M. Iqbal, Microstructure and hardness studies of electron beam welded Inconel 625 and stainless steel 304L, Vacuum 110 (2014) 121–126. , http://dx.doi. org/10.1016/j.vacuum.2014.08.016.
  • [33] M. Velu, S. Bhat, Metallurgical and mechanical examinations of steel–copper joints arc welded using bronze and nickel- base superalloy filler materials, Mater. Des. 47 (2013) 793–809. , http://dx.doi.org/10.1016/j.matdes.2012.12.073.
  • [34] A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, T. Niendorf, On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting, Eng. Fract. Mech. 120 (2014) 15–25. , http://dx.doi.org/10.1016/j. engfracmech.2014.03.008.
  • [35] F. Liu, X. Lin, G. Yang, M. Song, J. Chen, W. Huang, Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy, Opt. Laser Technol. 43 (2011) 208–213. , http://dx.doi. org/10.1016/j.optlastec.2010.06.015.
  • [36] E. Chlebus, K. Gruber, B. Kuznicka, J. Kurzac, T. Kurzynowski, Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting, Mater. Sci. Eng. A. 639 (2015) 647–655. , http:// dx.doi.org/10.1016/j.msea.2015.05.035.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c922215-d2a3-4ba3-ae13-a15f75ba9df9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.