Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Two yeast strains already identified as Pichia kudriavzevii AM-4 and Candida sp. PSM-33 were able to resist Cr(VI) up to 400 and 350 mg/dm3, respectively. The stability and optimum temperature of chromate reductase in both yeast strains was maximal at 30 °C. Candida sp. PSM-33 showed the higher chromate reductase activity at pH 5 whereas P. kudriavzevii AM-4 exhibited maximum activity at pH 7. Both chromate reductases (ChRs) activities were enhanced in the presence of Mg, Na, Co, and Ca but strongly inhibited by Hg cations. The total cell Cr(VI) uptake capabilities were 15–68 mg/g in Candida sp. PSM-33 and 17–73 mg/g in P. kudriavzevii AM-4 within 2–12 days of growth. It was found that 23–94% of Cr(VI) reduction was achieved by P. kudriavzevii AM-4 while Candida sp. PSM-33 showed 21–88% reduction at a concentration of 100 mg/dm3. Proteins extracted from P. kudriavzevii AM-4 and Candida sp. PSM-33 followed by one-dimensional electrophoresis revealed enriched bands of low molecular-weight metallothioneins (MTs) suggesting some differential proteins could be expressed under Cr(VI) treatment. Both yeast strains can be used to ameliorate the wastewater contaminated with toxic metal ions.
Czasopismo
Rocznik
Tom
Strony
57--68
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan
autor
- Department of Zoology, GC University-Lahore, Pakistan
autor
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan
Bibliografia
- [1] JUVERA-ESPINOSA J., MORALES-BARRERA L., CRISTIANI-URBINA E., Isolation and characterization of a yeast strain capable of removing Cr(VI), Enz. Microbial Technol., 2006, 40, 114e121.
- [2] IBRAHIM A.S.S., MOHAMED A.E., YAHYA B.E., AL-SALAMAH A.A., GARABED A., Hexavalent chromium reduction by alkaliphilic Amphibacillus sp. KSUCr3 is mediated by copper-dependent membrane-associated chromate reductase, Extremophiles, 2012, 16 (4), 659–668.
- [3] STASINAKIS A.S., THOMAIDIS N.S., MAMAIS D., PAPANIKOLAOU E.C., TSAKON A., LEKKAS T.D., Effect of chromium(VI) addition on the activated sludge process, Water Res., 2003, 37, 2140–2148.
- [4] BAI Z., HARVEY L.M., MCNEIL B., Oxidative stress in submerged cultures of yeasts, Crit. Rev. Biotechnol., 2003, 23, 267–302.
- [5] KOTAS J., STASICKA Z., Chromium occurrence in the environment and methods of its speciation, Environ. Poll., 2000, 107, 263–283.
- [6] ANDERSON R.A., POLANSKY M.M., BRYDEN N.A., Stability and absorption of chromium and absorption of chromium histidinate complexes by humans, Biol. Trace Elem. Res., 2004, 101 (3), 211–218.
- [7] ACKERLEY D.F., BARAK Y., LYNCH S.V., CURTIN J., MATIN A., Effect of chromate stress on Escherichia coli K-12, J. Bacteriol., 2006, 188, 3371–3381.
- [8] CERVANTES C., CAMPOS‐GARCÍA J., DEVARS S., GUTIÉRREZ‐CORONA F., LOZA‐TAVERA H., TORRES-GUZMÁN J.C., MORENO‐SÁNCHEZ R., Interactions of chromium with microorganisms and plants, FEMS Microbiol. Rev., 2001, 25 (3), 335–347.
- [9] VILLEGAS L.B., AMOROSO M.J., DE FIGUEROA L.I.C., Copper tolerant yeasts isolated from polluted area of Argentina, J. Basic Microbiol., 2005, 45, 381–391.
- [10] WIEGAND H.J., OTTENWEILDER H., BOLT H.M., Fast uptake kinetics in vitro of 51 Cr(VI) by red blood cells of man and rat, Arch. Toxicol., 1985, 57, 31e34.
- [11] BATIC M., RASPOR P., Uptake and bioaccumulation of Cr(III) in yeast Saccharomyces cerevisiae, Food Technol. Biotechnol., 1998, 36, 291–297.
- [12] ZAHOOR A., REHMAN A., Isolation of Cr(VI) reducing bacteria from industrial effluents and their potentialuse in bioremediation of chromium containing wastewater, J. Environ. Sci., 2009, 21, 814–820.
- [13] RASPOR P., BATIC M., JAMNIK P., JOSIC D., MILACIC R., PAS M., RECEK M., REZIC-DEREANI V., SKRT M., The influence of chromium compounds on yeast physiology (a review), Acta Microbiol. Immunol. Hung., 2000, 47, 143–173.
- [14] ILYAS S., REHMAN A., VARELA A.C., SHEEHAN D., Redox proteomics changes in the fungal pathogentrichosporon asahii on arsenic exposure. Identification of protein responses to metal-induced oxidativestress in an environmentally-sampled isolate, PLoS One, 2014, 9 (7), e102340.
- [15] BRADFORD M.M., Rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding, Annal. Biochem., 1976, 72, 248–254.
- [16] SARANGI A., KRISHNAN C., Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistantbacteria isolated from chromate contaminated soil, Bioresour. Technol., 2008, 99 (10), 4130–4137.
- [17] APHA, Standard methods for the examination of water and wastewater, 19th Ed., American PublicHealth Association, Washington, DC, 1995.
- [18] LI Z.J., YUAN H.L., HU X.D., Cadmium-resistance in growing Rhodotorula sp. Y11, Bioresour. Technol., 2008, 99, 1339–1344.
- [19] REHMAN A., ANJUM M.S., Cadmium uptake by yeast, Candida tropicalis, isolated from industrial effluents and its potential use in wastewater clean-up operations, Water Air Soil Pollut., 2010, 205,149–159.
- [20] LAEMMLI U.K., Cleavage of structural proteins during assembly of the head of the bacteriophage T4,Nature, 1970, 227, 680–685.
- [21] ILYAS S., REHMAN A., ILYAS Q., Heavy metals induced oxidative stress in multi-metal tolerant yeast, Candida sp. PS33 and its capability to uptake heavy metals from wastewater, Pakistan J. Zool., 2017, 49 (3), 769–775.
- [22] ILYAS S., REHMAN A., Metal resistance and uptake by Trichosporon asahii and Pichia kudriavzevii isolated from industrial effluents, Arch. Environ. Prot., 2018, 44 (3), 77–84.
- [23] KHAN Z., REHMAN A., NISAR M.A., ZAFAR S., HUSSAIN S.Z., ZERR I., HUSSAIN I., WASEEM M., ARIF M., Molecular basis of Cd2+ stress response in Candida tropicalis, Appl. Microbiol. Biotechnol., 2017, 101, 7715–7728.
- [24] ELAHI A., REHMAN A., Oxidative stress, chromium resistance and uptake by fungi. Isolated from industrial wastewater, Braz. Arch. Biol. Biotechnol., 2017, 60, 1–14.
- [25] DAS A., CHANDRA A.L., Chromate reduction in Streptomyces, Experientia, 1990, 46, 731e733.
- [26] SRIVASTAVA S., THAKUR I.S., Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent, Bioresour. Technol., 2006, 97, 1167–1173.
- [27] ELANGOVAN R., ABHIPSA S., ROHIT B., LIGY P., CHANDRARAJ K., Reduction of Cr(VI) by a Bacillus sp., Biotechnol. Lett., 2006, 28, 247–252.
- [28] MARTORELL M.M., FERNÁNDEZ P.M., FARIÑA J.I., FIGUEROA L.I., Cr(VI) reduction by cell-free extracts of Pichia jadinii and Pichia anomala isolated from textile-dye factory effluents, Int. Biodet. Biod., 2012, 71, 80–85.
- [29] BAE W.C., LEE H.K., CHOE Y.C., JAHNG D.J., LEE S.H., KIM S.J., LEE J.H., JEONG B.C., Purification and characterization of NADPH dependent Cr(VI) reductase from Escherichia coli ATCC 33456, J. Microbiol., 2005, 43, 21–27.
- [30] CAMARGO F.A.O., BENTO F.M., OKEKE B.C., FRANKENBERGER W.T., Hexavalent chromium reduction by an Actinomycete, Arthrobacter crystallopoietes ES 32, Biol. Trace Elem. Res., 2004, 97, 183e194.
- [31] PAN R., CAO L., ZHANG R., Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19, J. Hazard. Mater., 2009, 171 (1), 761–766.
- [32] DURVE A., NAPHADE S., BHOT M., VARGHESE J., CHANDRA N., Plasmid curing and protein profiling of heavy metal tolerating bacteria from industrial waste, Arch. Appl. Sci. Res., 2013, 5 (4), 46–54.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c9009df-6a58-47fb-960b-71892c4d6100