PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Skeleton castings dynamic load resistance

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The article is to show selected results of research in a field of new type of cast spatial composite reinforcements. This article shows skeleton casting case as a particular approach to continuous, spatial composite reinforcement. Design/methodology/approach: The research is concerning properties of cast spatial microlattice structures called skeleton castings. In this paper results of impact test of skeleton casting with octahedron elementary cell were shown. The selection of internal topology of skeleton casting was based on numerical simulations of stress distribution. Findings: The possibility of manufacturing of geometrically complex skeleton castings without use of advanced techniques was confirmed. Research limitations/implications: With use of computer tomography, analysis of deformation mechanisms was carried out. Different levels of impact energies were used. Practical implications: Spatial skeleton casting with octahedron elementary cell confirmed their usefulness as impact energy absorbers. Originality/value: The overall aim of presented research was to determine the mechanisms of skeleton castings deformation processes. Thanks to CT data next step will be to create accurate numerical model for further simulation and design optimization.
Rocznik
Strony
94--98
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Foundry Department, Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice, Poland
autor
  • Foundry Department, Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice, Poland
autor
  • Foundry Department, Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice, Poland
Bibliografia
  • [1] T. George, V.S. Deshpande, H.N.G. Wadley, Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores, Composites Part A, Applied Science and Manufacturing 47 (2013) 31-40.
  • [2] G. Kooistra, Compressive behaviour of age hardenable tetrahedral lattice truss structures made from aluminium, Acta Materialia 52 (2004) 4229-4237.
  • [3] V. Deshpande, N. Fleck, Collapse of truss core sandwich beams in 3-point bending, International Journal of Solids and Structures 38 (2001) 6275-6305.
  • [4] J. Tian, T. Kim, T.J. Lu, H.P. Hodson, D.T. Queheillalt, D.J. Sypeck, H.N.G. Wadley, The effects of topology upon fluid-flow and heat-transfer within cellular copper structures, International Journal of Heat and Mass Transfer 47 (2004) 3171-3186.
  • [5] S. Jang H.J. Choi, Integrated design of blast resistance panels and materials, Composite Structures, 2013.
  • [6] W. Hufenbach, H. Ullrich, M. Gude, A. Czulak, P. Malczyk, V. Geske, Manufacture studies and impact behaviour of light metal matrix composites reinforced by steel wires, Archives of Civil and Mechanical Engineering 12 (2012) 265-272.
  • [7] Z. Xue, Preliminary assessment of sandwich plates subject to blast loads, International Journal of Mechanical Sciences 45 (2003) 687-705.
  • [8] Y.W. Lim, H.J. Choi, S. Idapalapati, Design of Alporas aluminum alloy foam cored hybrid sandwich plates using Kriging optimization, Composite Structures 96 (2013) 17-28.
  • [9] W. Hufenbach, M. Gude, L. Kroll, Design of multistable composites for application in adaptive structures, Composites Science and Technology 62 (2002) 2201-2207.
  • [10] L.J. Gibson, M.F. Ashby, G.S. Schajer, C.I. Robertson, The Mechanics of two-dimensional cellular materials, Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences 382 (1982) 25-42.
  • [11] K.P. Dharmasena, H.N.G. Wadley, Z. Xue, J.W. Hutchinson, Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading, International Journal of Impact Engineering 35 (2008) 1063-1074.
  • [12] I. Németh, K. Kovács, I. Reimerdes, crashworthiness study of railway vehicles - developing of crash elements, Procedings of 8th Mini Conference on “Vehicle System Dynamics, Identification and Anomalies”, 2002, 291-304.
  • [13] L. Valdevit, Structurally optimized sandwich panels with prismatic cores, International Journal of Solids and Structures 41 (2004) 5105-5124.
  • [14] M. Cholewa, S. Tenerowicz, J. Suchoń, Spatial bimetallic castings manufactured from iron alloys, Archives of Foundry Engineering 7 (2007) 33-38.
  • [15] M. Cholewa, M. Dziuba, Design of core geometry of aluminium skeleton casting with open pores, Archives of Mechanical Technology and Automation 26 2006 15-23 (in Polish).
  • [16] M. Cholewa, M. Dziuba-Kałuża, Structural analysis of aluminium skeleton castings, Archives of Foundry Engineering 8 (2008) 29-36.
  • [17] M. Cholewa, T. Szuter, Geometrical and mechanical analysis of 3D casted skeleton structure, Archives of Foundry Engineering, 10 (2010) 23-26.
  • [18] M. Cholewa, T. Szuter, Structure of AlSi skeleton castings, Archives of Foundry Engineering 12 (2012) 147-152.
  • [19] M. Cholewa, T. Wróbel, S. Tenerowicz, T. Szuter, Difussion phenomena between alloy steel and gray cast iron layered bimetallic casting, Archives of Metallurgy and Materials 55 (2010) 771-777.
  • [20] M. Cholewa, T. Szuter, M. Dziuba, Basic properties of 3D cast skeleton structures, Archives of Materials Science and Engineering 52 (2011) 101-111.
  • [21] N.A. Meisel, C.B. Williams, A. Druschitz, Lightweight metal cellular structures via indirect 3D printing and casting, Proceedings of the International Solid Freeform Fabrication Symposium, 2012 162-176.
  • [22] D. Bartocha, J. Kilarski, J. Suchoń, C. Baron, J. Szajnar, K. Janerka, W. Sebzda, Metallurgical and chemical quality of low-alloy constructional cast steel vs mechanical properties, Proceedings of the 21th International Conference on Metallurgy and Materials, Brno, 2012, 202-209.
  • [23] D. Bartocha, W. Sebzda, J. Suchoń, C. Baron, The evaluation of cast steel filtration efficiency, Proceedings of the 21th International Conference on Metallurgy and Materials, Brno, 2012.
  • [24] M. Cholewa, J. Gawroński, Z. Ignaszak, Technological aspects of particle-reinforced composites production, Materials and Design 18 (1998) 401-405.
  • [25] J. Jezierski, K. Janerka, Waste utilization in foundries and metallurgical plants, Polish Journal of Environmental Studies 20 (2011) 101-105.
  • [26] M. Cholewa, T. Szuter, Heat-insulating moulding sand with the glycol addition, Archives of Foundry Engineering 11 (2011) 61-64.
  • [27] M. Cholewa, Simulation of solidification process for composite micro-region with incomplete wetting of reinforcing particle, Journal of Materials Processing Technology 164 (2005) 1181-1184.
  • [28] M. Cholewa, Simulation of composite microregions solidification process, Journal of Materials Processing Technology 164 (2005) 1175-1180.
  • [29] W. Hufenbach, R. Böhm, M. Gude, M. Berthel, a. Hornig, S. Ručevskis, M. Andrich, A test device for damage characterisation of composites based on in situ computed tomography, Composites Science and Technology 72/12 (2012) 1361-1367.
  • [30] T. Szuter, M. Cholewa, Skeleton castings as a new type of spatial composite reinforcement with specific mechanical properties, Composites Theory and Practice 2 (2012) 121-125.
  • [31] M. Cholewa, T. Szuter, T. Wróbel, M. Kondracki, The skeleton castings as a new type of cast lattice structures, Journal of Achievements in Materials and Manufacturing Engineering 54 (2012) 250-259.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c88fc4f-ce6c-4e72-9ec5-44f82bab1fee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.