Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper introduces REDUCE, a Python module designed to minimize inconsistency in multiplicative pairwise comparisons (PC), a fundamental technique in Multi-Criteria Decision Making (MCDM). Pairwise comparisons are extensively used in various fields, including engineering science and numerical simulation methods, to compare different options based on a set of criteria. However, human errors in perception and judgment often lead to inconsistencies in pairwise comparison matrices (PCM). REDUCE addresses this issue by implementing several algorithms that identify and correct inaccurate data in PCMs, thereby reducing the inconsistency ratio. These algorithms do not require expert intervention, making REDUCE a valuable tool for both scientific research and small to medium enterprises that may not have access to costly commercial software or dedicated decision-making experts. The main functionality of the module is incorporating iterative algorithms for inconsistency reduction. The REDUCE library, written in Python and utilizing auxiliary libraries such as NumPy, SciPy, and SymPy, offers 21 functions categorized into data input helpers, consistency ratio (CR) reduction algorithms, PCM indexes, and support functions. Performance testing indicates that the library can efficiently handle matrices of varying sizes, particularly those ranging from 3x3 to 10x10, and its use significantly accelerates the process compared to spreadsheets, especially when dealing with large quantities of matrices. The library has already been used in several research papers and application tools, and its availability as a free resource opens up opportunities for small and medium-sized enterprises to leverage multi-criteria decision-making methods. Currently, there are no publicly available libraries for this solution. The authors believe that the proposed module may contribute to do better decision-making process in pairwise comparisons, not only for the circle of scientists but also for small and medium enterprises that usually cannot afford expensive commercial software and do not employ full-time experts in decision-making as they rely on the experience of their employees and free online resources. It should also contributes to the transition to Industry 4.0 and advances research in fields such as fuzzy logic, preference programming, and constructive consistent approximations.
Wydawca
Rocznik
Tom
Strony
227--234
Opis fizyczny
Bibliogr. 47 poz., fig., tab.
Twórcy
autor
- Department of Complex Systems, The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, ul. MC Skłodowskiej 8, 35-036 Rzeszów, Poland
autor
- Department of Complex Systems, The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, ul. MC Skłodowskiej 8, 35-036 Rzeszów, Poland
autor
- Department of Complex Systems, The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, ul. MC Skłodowskiej 8, 35-036 Rzeszów, Poland
autor
- School of Business Administration in Karvina, Silesian University in Opava, Univerzitní nám. 1934, Fryštát, 733 40 Karviná, Czech Republic
Bibliografia
- 1. Lull R. Artifitium electionis personarum (The method for the elections of persons) 1274-1283. Available from: https://www.math.uni-augsburg. de/htdocs/emeriti/pukelsheim/llull/
- 2. Condorcet Md. Essai sur l’application de l’analyse a la probabilite des decisions rendues a la pluralite des voix, Paris, France; 1785.
- 3. Thurstone L.L. A law of comparative judgments. Psychological Reviews. 1927; 34: 273–286.
- 4. Saaty T.L. A Scaling Method for Priorities in Hierarchical Structures. Journal of Mathematical Psychology. 1977; 15: 234–281.
- 5. Vaidya O.S., Kumar S. Analytic hierarchy process: An overview of applications. European Journal of Operational Research. 2006; 169: 1–29.
- 6. Barzilai J. Consistency measures for pairwise comparison matrices. Journal of Multi-Criteria Decision Analysis. 1998; 7(3): 123–132.
- 7. Golden B., Wang Q. An alternate measure of consistency. In: Golden B, Wasil E, Harker PT, editors. The Analytic Hierarchy Process, Applications and Studies. Berlin–Heidelberg: Springer-Verlag; 1989; 68–81.
- 8. Koczkodaj W.W. A new definition of consistency of pairwise comparisons. Mathematical and Computer Modeling. 1993; 18(7): 79–84.
- 9. Obata T., Shiraishi S., Daigo M., Nakajima N. As-sessment for an incomplete comparison matrix and improvement of an inconsistent comparison: computational experiments. ISAHP. Kobe, Japan; 1999.
- 10. Peláez J.I., Lamata M.T. A new measure of inconsistency for positive reciprocal matrices. Computer and Mathematics with Applications. 2003; 46(12): 1839–1845.
- 11. Aguarón J., Moreno-Jiménez J.M. The geometric consistency index: Approximated threshold. European Journal of Operational Research. 2003; 147(1): 137–145.
- 12. Aguarón J., Escobar M.T., Moreno-Jiménez J.M., Turón A. The Triads Geometric Consistency Index in AHP-Pairwise Comparison Matrices. Mathematics. 2020; 8: 926. https://doi.org/10.3390/math8060926.
- 13. Stein W.E., Mizzi P.J. The Harmonic Consistency Index for the Analytic Hierarchy Process. Europe- an Journal of Operational Research. 2007; 177(1): 488–497.
- 14. Ramík J., Korviny P. Inconsistency of pairwise comparison matrix with fuzzy elements based on geometric mean. Fuzzy Sets and Systems. 2010; 161: 1604–1613.
- 15. Salo A.A., Hämäläinen R. Preference Programming through Approximate Ratio Comparisons. European Journal of Operational Research. 1995; 82(3): 458–475.
- 16. Harris C.R., Millman K.J, van der Walt S.J., Gommers R., Virtanen P., Cournapeau D., et al. Array programming with NumPy. Nature. 2020; 585(7825): 357–362. https://doi.org/10.1038/ s41586-020-2649-2
- 17. Virtanen P., Gommers R., Oliphant T.E., Haber- land M., Reddy T., Cournapeau D., et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020; 17: 261–272. https:// doi.org/10.1038/s41592-019-0686-2
- 18. Meurer A., Smith C.P., Paprocki M., Čertík O., Kirpichev S.B., Rocklin M., et al. SymPy: symbolic computing in Python. PeerJ Computer Science. 2017; 3: e103.
- 19. Department of Complex Systems, Rzeszow University of Technology. REDUCE [Internet]. GitHub. 2023. Available from: https://github.com/zszprz/ reduce. DOI:10.5281/zenodo.7335819
- 20. Mazurek J., Perzina R., Strzałka D., Kowal B., Kuraś P. A numerical comparison of iterative algorithms for inconsistency reduction in pairwise comparisons. IEEE Access. 2021; 9: 62553-62561.
- 21. Mazurek J. Advances in Pairwise Comparisons: The Detection, Evaluation and Reduction of Inconsistency. Heidelberg: Springer; 2023.
- 22. Kuraś P. GitHub [Internet]. 2022. Available from: https://github.com/pawkuras/PCM_CR
- 23. Kowal B., Kuraś P., Strzałka D., Mazurek J., Perzina R. REDUCE. 3rd International conference on Decision making for Small and Medium-Sized Enterprises DEMSME 2021. Conference Proceedings.
- 24. Kowal B., Kuraś P., Strzałka D., Mazurek J., Perzina R. REDUCE [Internet]. 2021. Available from: https://reduce.prz.edu.pl/
- 25. Kuraś P., Gerka A. Using inconsistency reduction algorithms in comparison matrices to improve the performance of generating random comparison matrices with a given inconsistency coefficient range. Advances in Science and Technology Research Journal. 2023; 17(1): 222-229.
- 26. Kuraś P. Matrices generator [Internet]. 2022. Available from: https://reduce.prz.edu.pl/ pc_matrices_generator
- 27. Cao D., Leung L.C., Law J.S. Modifying Inconsistent Comparison Matrix in Analytic Hierarchy Process: A Heuristic Approach. Decision Support Systems. 2008; 44: 944–953. DOI: 10.1016/j. dss.2007.11.002
- 28. Szybowski J. The improvement of data in pairwise comparison matrices. Procedia Computer Science. 2018; 126: 1006–1013.
- 29. Zeshui X., Cuiping W. A consistency improving method in the analytic hierarchy process. European Journal of Operational Research. 1999; 116(2): 443–449
- 30. Kou G., Ergu D., Shang J. Enhancing data consistency in decision matrix: Adapting Hadamard model to mitigate judgment contradiction. European Journal of Operational Research. 2014; 236(1): 261–271.
- 31. Mazurek J., Perzina R., Strzałka D., Kowal B. A new step-by-step (SBS) algorithm for inconsistency reduction in pairwise comparisons. IEEE Access. 2020; 8: 135821–135828.
- 32. Abel E., Mikhailov L., Keane J. Inconsistency reduction in decision making via multi-objective optimisation. European Journal of Operational Research. 2018; 267(1): 212–226.
- 33. Bozóki S., Fülöp J., Poesz A. On pairwise comparison matrices that can be made consistent by the modification of a few elements. Central European Journal of Operations Research. 2011; 19(2): 157–175.
- 34. Bozóki S., Fülöp J., Poesz A. On reducing inconsistency of pairwise comparison matrices below an acceptance threshold. Central European Journal of Operations Research. 2015; 23(4): 849–866.
- 35. Negahban A. Optimizing consistency improvement of positive reciprocal matrices with implications for Monte Carlo analytic hierarchy process. Computers & Industrial Engineering. 2018; 124: 113–124.
- 36. Gao J., Shan R. A new method for modification consistency of the judgment matrix based on genetic ant algorithm. Applied Mathematics & Information Sciences. 2012; 6(1): 35–39.
- 37. Girsang A.S., Tsai C.W., Yang C.S. Ant algorithm for modifying an inconsistent pairwise weighting matrix in an analytic hierarchy process. Neural Computing and Applications. 2015; 26(2): 313–327.
- 38. Zhang H., Sekhari A., Ouzrout Y., Bouras A. Optimal inconsistency repairing of pairwise comparison matrices using integrated linear programming and eigenvector methods. Mathematical Problems in Engineering. 2014.
- 39. Li H.L., Ma L.C. Detecting and adjusting ordinal and cardinal inconsistencies through a graphical and optimal approach in AHP models. Computers & Operations Research. 2007; 34(3): 780–798.
- 40. Ergu D., Kou G., Peng Y., Shi Y. A simple method to improve the consistency ratio of the pair-wise comparison matrix in ANP. European Journal of Operational Research. 2011; 213(1): 246–259.
- 41. Kułakowski K., Juszczyk R., Ernst S. A concurrent inconsistency reduction algorithm for the pairwise comparisons method. In International Conference on Artificial Intelligence and Soft Computing. Cham: Springer; 2015; 214–222.
- 42. Pereira V., Costa H.G. Nonlinear programming applied to the reduction of inconsistency in the AHP method. Annals of Operations Research. 2015; 229(1): 635–655.
- 43. Erdogan S.A., Šaparauskas J., Turskis Z. Decision making in Construction Management: AHP and Expert Choice approach. Procedia Engineering. 2017; 172: 270–276.
- 44. Sajjad A., Ahmad W., Hussain S. Decision-Making Process Development for Industry 4.0 Transformation. Advances in Science and Technology Research Journal. 2022; 16(3): 1–11. https://doi. org/10.12913/22998624/147237
- 45. Kozera R., Smarzewski R. Constructive Consistent Approximations in Pairwise Comparisons. Advances in Science and Technology Research Journal. 2022; 16(4): 243–255. https://doi. org/10.12913/22998624/153086
- 46. Stevanović D., Lekić M., Krzanovic D., Ristović I. Application of MCDA in Selection of Different Mining Methods and Solutions. Advances in Science and Technology Research Journal. 2018; 12(1): 171-180. https://doi.org/10.12913/22998624/85804
- 47. Urbański T. Assessment of the productibility of hybrid nodes using the multi-criteria meth- od. Advances in Science and Technology Research Journal. 2014; 8(22): 31–36. https://doi. org/10.12913/22998624.1105160
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c87509c-1243-42a0-a2ac-1c1fc8aff4c4