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A DIRECT APPROACH
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Abstract. A direct approach is used to solve some linear-quadratic stochastic control problems
for Brownian motion and other noise processes. This direct method does not require solving
Hamilton–Jacobi–Bellman partial differential equations or backward stochastic differential
equations with a stochastic maximum principle or the use of a dynamic programming principle.
The appropriate Riccati equation is obtained as part of the optimization problem. The noise
processes can be fairly general including the family of fractional Brownian motions.
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1. INTRODUCTION

The control of a linear stochastic differential equation with an additive control,
an additive Brownian motion, and a quadratic cost in the state and the control is
probably the most well known control problem and has a simple, explicit solution e.g.
[6]. The typical approaches to the solution of this control problem are either to use
the Hamilton–Jacobi–Bellman (HJB) equation or the stochastic maximum principle
with the solution of a backward stochastic differential equation. An important feature
concerning the HJB equation approach for this problem is that the solution of this
equation is basically the same as the solution of the Hamilton–Jacobi partial differen-
tial equation for the corresponding deterministic linear-quadratic control problem that
arises by eliminating the noise term in the stochastic system though the former partial
differential equation is of second order and the latter partial differential equation is of
first order. In [4] an approach to the linear-quadratic control problem with a general
noise process provides evidence that the stochastic control problem can be considered
as an affine translation of the corresponding deterministic control problem. However
this relation between optimization problems assumed that the Riccati equation is
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given and it can be used to solve the HJB equation. In this paper motivated by the
algebraic method of completion of squares the form of the Riccati equation is derived
and its geometric justification is noted from a flow in the Lagrangian Grassmannian
[1,2]. The HJB equation is a second order nonlinear partial differential equation which
is clearly very difficult to solve explicitly in any generality. Furthermore it is typically
very difficult to obtain explicit solutions to backward stochastic differential equations
which are stochastic equations that are solved backward in time but having a forward
measurability. An aim of this paper is to solve the linear-quadratic stochastic control
problem in a direct and natural way which should provide more insight into the
fundamental features of this problem.

2. CONTROL PROBLEM FORMULATION WITH BROWNIAN MOTION

The controlled linear stochastic system is described by the following stochastic differ-
ential equation:

dX(t) = A(t)X(t)dt+B(t)U(t)dt+ C(t)dW (t), (2.1)
X(0) = X0, (2.2)

where X0 ∈ Rn is random, X(t) ∈ Rn, A(t) ∈ L(Rn,Rn), B(t) ∈ L(Rm, Rn),
C(t) ∈ L(Rk,Rn), for each t ∈ [0, T ], and these deterministic, linear transformations
are continuous and thus uniformly bounded, U(t) ∈ Rm, for each t ∈ [0, T ], where
U ∈ U , is the control and U is the family of admissible controls, (W (t), t ∈ [0, T ]) is
an Rk-valued standard Brownian motion that is defined on the complete probability
space (Ω,F ,P) and (F(t), t ∈ [0, T ]) is the filtration for the Brownian motion W . The
random elements X0 and W are assumed to be independent and X0 is defined on
the same probability space as W . The positive integers (k,m, n) are arbitrary.

The family of admissible controls, U , is

U = {U : U is an Rm-valued (F(t))-adapted process such that U ∈ L2([0, T ]) a.s.}.

The cost functional J is a quadratic functional of X and U that is given by

J0(U) = 1
2

T∫

0

(〈Q(s)X(s), X(s)〉+ 〈R(s)U(s), U(s)〉)ds+ 1
2 〈MX(T ), X(T )〉, (2.3)

J(U) = E[J0(U)] (2.4)

where Q(t) ∈ L(Rn,Rn), R(t) ∈ L(Rm,Rm),M ∈ L(Rn,Rn), Q(t) > 0, R(t) > 0
for each t ∈ [0, T ] and M > 0 are symmetric linear transformations and Q,R are
continuous and deterministic, 〈·, ·〉 denotes the canonical Euclidean inner product on
the Euclidean space of the appropriate dimension and E is expectation with respect
to the probability measure P. The dependence of J on X0 is suppressed for notational
simplicity.
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An important idea to understanding the solution of this control problem is to
note some geometry associated with it. The natural geometric setting for the problem
(2.1) and (2.3) is the Lagrangian Grassmannian that is usually denoted by Λ(n)
for an appropriate positive integer n. It is a Grassmannian of n planes in 2n dimensional
Euclidean space with a closed, nondegenerate two form denoted ω. Arnold [1] used these
Grassmannians particularly for his study of classical mechanics [2]. The space Λ(n) has
dimension n(n+1)

2 and it can also be described as the homogeneous space U(n)/O(n)
where U(n) is the group of unitary transformations on Cn = R2n and O(n) is the
orthogonal group on Rn. Let V = R2n and (e1, . . . , en, f1, . . . , fn) be a symplectic
basis of (V, ω), that is,

ω(ei, ej) = 0 for all i, j ∈ {1, . . . , n}, (2.5)
ω(ei, fj) = δij for all i, j ∈ {1, . . . , n}, (2.6)

ω(u, v) = uT

[
0 In

−In 0

]
v (2.7)

for u, v ∈ R2n. Similar to a line through the origin in R2 being described as the
pair (x, ax) where the line has finite slope a, a (nonsingular) plane in Λ(n) can be
described as (x, Px) where P is a symmetric matrix. This description of Λ(n) shows
that dimΛ(n) = n(n+1)

2 and Λ(n) is a natural description to determine optimal controls
from the solution of a Riccati equation.

The following theorem is a solution to the well known linear-quadratic stochastic
control problem.

Theorem 2.1. An optimal control, U∗, for the stochastic control problem given by
(2.1) and (2.3) is given by

U∗(t) = −R−1(t)BT (t)P (t)X(t), (2.8)

where P is the unique, symmetric, positive definite solution of the following Riccati
equation

dP

dt
= −PA−ATP + PBR−1BTP −Q, (2.9)

P (T ) = M, (2.10)

and the optimal cost is

J(U∗) =
T∫

0

tr(PCCTP )dt+ E〈P (0)X(0), X(0)〉, (2.11)

Proof. In this proof, the Riccati equation is obtained from a requirement that the
optimal control is obtained from a suitable squared expression. From the properties of
the Lagrangian Grassmannian, it is natural to describe the evolution of the optimization
problem by a curve in symmetric elements of L(Rn,Rn). Let Y (t) = 〈P (t)X(t), X(t)〉



824 Tyrone E. Duncan and Bozenna Pasik-Duncan

for t ∈ [0, T ] for a symmetric P (t) ∈ L(Rn,Rn). Apply the change of variables formula
(Ito formula) to the process (Y (t), t ∈ [0, T ]) to obtain a quadratic expression so
that an optimal control becomes clear. It is assumed that (P (t), t ∈ [0, T ]) satisfies
an ordinary differential equation that has the following form.

dP

dt
= K1P + PKT

1 +K2PK3PK
T
2 +K4, (2.12)

P (t) = M, (2.13)

where K1,K2,K3,K4 are L(Rn,Rn)-valued and K3,K4 are also symmetric. These
four linear transformations are determined from the description of the control problem
by requiring that the optimal control is identified by a squared expression.

By the Ito formula (change of variables) the process (Y (t), t ∈ [0, T ]) satisfies
the following integral expression

Y (T )− Y (0) =
T∫

0

(2〈PX,AX +BU〉dt+ 2〈PX,CdW 〉

+ tr(PCCT )dt
+ 〈X, (K1P + PKT

1 +K2PK3PK
T
2 +K4)X〉dt).

(2.14)

Adding the integral terms for the cost functional to the previous equation it follows
that

J0(U)− 〈P (0)X(0), X(0)〉 =
T∫

0

((〈RU,U〉+ 〈QX,X〉

+ 2〈PX,AX +BU〉)dt+ 2〈PX,CdW 〉
+ tr(PCCT )dt
+ 〈X, (K1P + PKT

1 +K2PK3PK
T
2 +K4)X〉dt).

(2.15)

It is desired to choose linear transformations (K1,K2,K3,K4) so that the above
equation can be expressed as

J0(U)− 〈P (0)X(0), X(0)〉 =
T∫

0

((|L1(L2U − L3X)|2 + L4)dt

+ 2〈PX,CdW 〉),

(2.16)

where (L1, L2, L3, L4) are suitable linear transformations. Now equate the right hand
sides of (2.15) and (2.16) canceling the common stochastic integral term to determine
the unknown terms (K1,K2,K3,K4, L1, L2, L3, L4).
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T∫

0

(〈RU,U〉+ 〈QX,X〉+ 2〈PX,AX +BU〉)dt

+ tr(PCCT )dt
+ 〈X, (K1P + PKT

1 +K2PK3PK
T
2 +K4)X〉dt

= (〈L1(L2U + L3X), L1(L2U + L3X)〉+ L4)dt.

(2.17)

It follows immediately that L4 = tr(PCCT ). From the quadratic term in X it
follows that K2PK3PK

T
2 = LT

3 L
T
1 L1L3. From the squared term in U it follows that

LT
2 L

T
1 L1L2 = R. From the cross term in U,X it follows that L3L

T
1 L1L2 = PB. Let

L2 = R and L1 = R− 1
2 so that LT

2 L
T
1 L1L2 = R is satisfied. Thus L3 = PB and

L1, L2, L3, L4 are determined. Choose K3 = R−1 = LT
1 L1,K2 = BTP, and from the

above K1 = −AT ,K4 = −Q. Thus the Riccati equation is

dP

dt
= −(ATP + PA) +BTPR−1PB −Q, (2.18)

P (T ) = M. (2.19)

It follows from (2.17) that an optimal control U∗ is

U∗(t) = −R−1(t)BT (t)P (t)X(t). (2.20)

The optimal cost is J(U∗) = EJ0(U∗) given by

J(U∗) =
T∫

0

tr(PCCT )dt+ E〈P (0)X(0), X(0)〉. (2.21)

A similar approach can be used to solve a linear-quadratic control problem for
linear stochastic equations in an infinite dimensional separable Hilbert space e.g. [5]
and for linear-quadratic stochastic differential games [3].

3. CONTROL PROBLEM FORMULATION
WITH GENERAL NOISE PROCESSES

Now it is sketched how to extend the result for an optimal control to linear stochastic
systems that have a fairly general noise process such as the family of fractional
Brownian motions. In the controlled linear system (2.1) the Brownian motion is
replaced by a stochastic process that is square integrable with continuous sample paths

dX(t) = A(t)X(t)dt+B(t)U(t)dt+ C(t)dW (t), (3.1)
X(0) = X0, (3.2)
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where X0 ∈ Rn is a random vector, X(t) ∈ Rn, A(t) ∈ L(Rn,Rn), B(t) ∈ L(Rm,Rn),
C(t) ∈ L(Rk,Rn), for each t ∈ [0, T ], and these deterministic functions are continuous
and thus uniformly bounded, U(t) ∈ Rm, for each t ∈ [0, T ], where U ∈ U , is the
control and U is the family of admissible controls, (W (t), t ∈ [0, T ]) is an Rk-valued
square integrable process with continuous sample paths that is defined on the complete
probability space (Ω,F ,P) and (F(t), t ∈ [0, T ]) is the filtration for the process W .
The random elements X0 and W are assumed to be independent and X0 is defined on
the same probability space as W . The positive integers (k,m, n) are arbitrary.

Theorem 3.1. For the control problem with the linear system (3.1) and the quadratic
cost functional (2.3) there is an optimal control, U∗, that is given by

U∗(t) = −R−1(t)BT (t)P (t)X(t) +R−1(t)BT (t)CE[W (t)|F(t)]. (3.3)

The proof is obtained by approximating the noise process W by a sequence of
piecewise linear processes, replacingW by an element of this sequence and solving each
of these control problems. The additional term on the RHS for an optimal control arises
as the best estimate of the future noise. The proof can be verified using the results
in [4].

4. CONCLUSIONS

A direct method is provided to obtain an optimal control for a linear-quadratic
stochastic control problem that does not require solving a Hamilton-Jacobi-Bellman
equation or a backward stochastic differential equation. The appropriate Riccati
equation is derived from an algebraic requirement that the optimal control is obtained
from a quadratic functional obtained from the system dynamics and the cost functional.
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