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Abstract. Let Y be a random real response which is subject to left-truncation by another
random variable T . In this paper, we study the kernel conditional quantile estimation when
the covariable X takes values in an infinite-dimensional space. A kernel conditional quantile
estimator is given under some regularity conditions, among which in the small-ball probability,
its strong uniform almost sure convergence rate is established. Some special cases have been
studied to show how our work extends some results given in the literature. Simulations
are drawn to lend further support to our theoretical results and assess the behavior of the
estimator for finite samples with different rates of truncation and sizes.
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1. INTRODUCTION

Let (X,Y ) be a couple of random variables (r.v.’s) valued in F × R, where F is a
semi-metric space, d denoting the semi-metric and Y being with distribution function
(d.f.) F . Our purpose is to study the co-variation between X and Y via the quantile
regression estimation when the interest r.v. is subject to random left truncation and
the regressors take values in an infinite dimensional space.

It is well-known that, in nonparametric modeling, quantile regression is a useful
analysis tool since it is less sensitive to outliers compared to classical regression.

For complete data and when the regressors are of functional type, and to the best
of our knnowledge the first references are [9] and [13], where the authors established
the strong consistency.
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Many authors considered this problem when the explanatory variable is of functional
type. Without pretending to be exhaustive, we quote the monographs by [4,11,14,20,34]
and the recent one [3], where many new results are presented.

When the interest random variable Y is subject to random censorship and for
functional covariates, we can cite the works on strong consistency and asymptotic
normality for the independent and identically distributed (i.i.d.) case by [7] and [8]
and for time series by [18] and [19].

This paper is devoted to extend the results of [9] to the case where the interest
random variable is subject to truncation which definition is given hereafter.

Truncation is another type of incomplete data which is completely different from
censorship (see [37]). In some pratical situations (some examples are given below) the
interest r.v. Y is inferred by another r.v. in the following sense:

Let T be another real r.v. with unknown d.f. G. We consider a sample
(Y1, T1), (Y2, T2), . . . , (YN , TN ), N copies of (Y, T ), where the sample size N is fixed
but unknown. In this model (Yi, Ti) is observed only if Yi ≥ Ti no data is collected
otherwise. Then the observed sample size n is random (but known) with n ≤ N . In
practice, such models are considered in many applications. We quote two examples
from the literature:
– AIDS study [22]: Let W be the infection time, where 1 corresponds to January
1978 and let T be the incubation time in months for people who were infected by
contaminated blood transfusions and developed AIDS by 1 July 1986. Since the
total study period is 102 months only individuals with W + T < 102 were included
in the sample. Then, letting Y = 102 −W yields the model described: (Y, T ) is
observed only if T < Y .

– Retirement House [23]: In a retirement centre, subjects are observed only if
they live long enough to enter the retirement house. The lifetime Y is then left
truncated by the retirement house entry age, T . People who enter the retirement
house earlier may get better medical attention and therefore live longer. On the
other hand, people with poor health and a shorter expected lifetime may retire
earlier.
Left truncation in studies of developmental processes is not just of theoretical

interest: It can cause substantial bias if ignored. Other examples in which a large
fraction of potential observations are left truncated are the rate of spontaneous abortion
[31] and the age at menopause transition stages [16].

Now let {(Xi, Yi, Ti), 1 ≤ i ≤ N} be a sequence of iid random vectors, where Xi

takes values in some normed space (S, ‖ · ‖), Yi and Ti are as before.
Since N is unknown and n is known (although random), our results will not be

stated with respect to the probability measure P (related to the N -sample). Without
possible confusion, we still denote (Yi, Ti), i = 1, 2, . . . , n, (n ≤ N) the observed pairs
from the original N−sample. In all the remaining parts of this paper we suppose that
T is independent of Y .

Let Pn(·) = P(·|n) be the conditional probability. Since, independence is preserved,
we can write Pn = P⊗n, where P(·) = P1(·) = P(·|Y ≥ T ). Estimation results are then
established considering n→∞ and so are expressed with respect to the probability P.
Finally, let E(·) and E(·) denote the respective expectation operators of P(·) and P(·).
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Now, for x ∈ S, we consider the conditional probability distribution of Yi given
Xi = x by

F (y|x) = P(Yi ≤ y|Xi = x), (1.1)
where F is supposed to be strictly monotone.

Let p ∈ (0, 1). The conditional quantile is defined by

ζp(x) = inf{y : F (y|x) ≥ p}. (1.2)

It is clear that an estimator of ζp(x) can easily be deduced from an estimator of F (·|x).
We point out that ζp(x) satisfies

F (ζp(x)|x) = p. (1.3)

The rest of the paper is as follows: in Section 2, we recall some background for truncated
data. Section 3 contains the definition of our estimators of the conditional distribution
and conditional quantile. The assumptions and main results are given in Section 4.
In Section 5 a discussion is given about the assumptions and examples for the most
important assumption (A1). Section 6 considers some particular cases. A simulation
study is detailed in Section 7. Finally, the proofs are relegated to Section 8.

2. BACKGROUND FOR TRUNCATION MODELS

In this section we give the main definitions and results related to truncation models.
We refer the reader to [27] or [32] for more details.

Recall that our original sample is (Xi, Yi, Ti)1≤i≤N . Taking into account the trun-
cation effect we denote by (X1, Y1, T1), . . . , (Xn, Yn, Tn) the actually observed sample
(i.e Yi ≥ Ti, 1 ≤ i ≤ n) and suppose that α := P(Y1 ≥ T1) > 0. Conditionally on the
value of n, these observed random vectors are still iid (see [26]). Note here that n is a
real random variable itself and that from the strong law of large numbers (SLLN) we
have, as N →∞,

α̃n = n

N
−→ α P− a.s. (2.1)

For any real d.f. L denote the left and right endpoints of its support by aL = inf{t :
L(t) > 0} and bL = sup{t : L(t) < 1}, respectively.

The conditional joint distribution function (see [37]) of (Y1, T1) is

J∗(y, t) = P(Y1 ≤ y, T1 ≤ t|Y1 ≥ T1) = P(Y1 ≤ y, T1 ≤ t) = α−1
y∫

−∞

G(t ∧ u)dF (u),

where t ∧ u = min(t, u).
Following [37] the distribution functions of Y and T are

F ∗(y) = α−1
y∫

−∞

G(u)dF (u) and G∗(t) = α−1
+∞∫
−∞

G(t ∧ u)dF (u),
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respectively, and are estimated by

F ∗n(y) = n−1
n∑
i=1

1{Yi≤y} and G∗n(t) = n−1
n∑
i=1

1{Ti≤y},

respectively, where 1A is the indicator of the set A. Note that, in what follows, the
star notation (∗) relates to any characteristic of the actually observed data (that is,
conditionally on n).

Define

C(y) = G∗(y)− F ∗(y)

= P(T1 ≤ y ≤ Y1|Y1 ≥ T1) = α−1G(y)
(

1− F (y)
)
, y ∈ [aF ,+∞)

and consider its empirical estimate

Cn(y) = n−1
n∑
i=1

1{Ti≤y≤Yi} = G∗n(y)− F ∗n(y−).

It is well known that the respective nonparametric maximum likelihood of F and G
are the product-limit estimators given by

Fn(y) = 1−
∏
Yi≤y

[nCn(Yi)− 1
nCn(Yi)

]
and Gn(y) =

∏
Ti>y

[nCn(Ti)− 1
nCn(Ti)

]
which were obtained by [29]. Their asymptotic properties were studied by [38] who
showed that

sup
y
|Fn(y)− F (y)| P−a.s−→ 0 and sup

y
|Gn(y)−G(y)| P−a.s−→ 0, (2.2)

provided aG ≤ aF , bG ≤ bF and
∫
dF/G <∞.

Consequently, α is identifiable only if aG ≤ aF and bG ≤ bF . Note that the
estimator α̃n defined in (2.1) cannot be calculated (since N is unknown). Another
estimator, namely

αn = Gn(y)[1− Fn(y−)]
Cn(y) (2.3)

is used. In [17] the authors proved that αn does not depend on y and its value can
then be obtained for any y such that Cn(y) 6= 0. Furthermore, they showed (in their
Corollary 2.5) its P− a.s. consistency.

3. QUANTILE AND DISTRIBUTION FUNCTIONS ESTIMATORS

In this section we recall some results and then define our quantile estimator. Our
estimation of the conditional distribution function is based on the choice of weights.
These are obtained in [32].



Kernel conditional quantile estimator under left truncation for functional regressors 29

Recall that, in the case of complete data, a well-known kernel estimator of the
regression function in infinite dimensional space is based on the Nadaraya-Watson
weights

Wi,N (x) =
K
(
‖x−Xi‖
hN,K

)
∑N
i=1K

(
‖x−Xj‖
hN,K

) =
(Nφ(h))−1K

(
‖x−Xi‖
hN,K

)
gN (x) (3.1)

associated to the N -sample (with convention 0/0 = 0) and φ(·) is a function which
will be described later.

As N is unknown, we have to adapt the weights given in [27] which gives the
following values

W̃i,n(x) =
α−1
n K

(
‖x−Xi‖
hn,K

)
∑n
i=1G

−1
n (Yi)K

(
‖x−Xi‖
hn,K

) . (3.2)

Note that, in this formula and the forthcoming, the sum is taken only for i such that
Gn(Yi) 6= 0. This in turn yields an estimator of the conditional distribution function
F (y|x) given by

Fn(y|x) = αn

n∑
i=1

W̃i,n(x) 1
Gn(Yi)

H
(y − Yi
hn,H

)

=

∑n
i=1G

−1
n (Yi)K

(
‖x−Xi‖
hn,K

)
H
(
y−Yi
hn,H

)
∑n
i=1G

−1
n (Yi)K

(
‖x−Xi‖
hn,K

) = ψn(x, y)
gn(x) ,

(3.3)

where

ψn(x, y) = αn
nφ(hn,K)

n∑
i=1

1
Gn(Yi)

K
(‖x−Xi‖

hn,K

)
H
(y − Yi
hn,H

)
(3.4)

and

gn(x) = αn
nφ(hn,K)

n∑
i=1

1
Gn(Yi)

K
(‖x−Xi‖

hn,K

)
. (3.5)

Here K is a real-valued kernel function, H is a d.f. and hn,K =: hK (resp. hn,H =: hH)
is a sequence of positive real numbers which goes to zero as n goes to infinity.

Let p ∈ (0, 1). A natural estimator of ζp(·) is given by

ζp,n(x) = inf{y : Fn(y|x) ≥ p} (3.6)

which satisfies
Fn(ζp,n(x)|x) = p. (3.7)

We consider the partial derivative of ψn(x, y)

∂ψn(x, y)
∂y

= ψ′n(x, y) = αn
nhHφ(hK)

n∑
i=1

1
Gn(Yi)

K
(‖x−Xi‖

hK

)
H ′
(y − Yi

hH

)
,

where H ′ is derivative of H.
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Making use of (1.3) and (3.7), we get

Fn(ζp(x)|x)− F (ζp(x)|x) = (ζp(x)− ζp,n(x))fn(ζ∗p,n(x)|x), (3.8)

where
fn(y|x) = ∂Fn(y|x)

∂y
= ψ′n(x, ·)

gn(x)

is the estimate of the conditional density of Y (that is f(.|x)) given X = x, and
ζ∗p,n(x) lies between ζp(x) and ζp,n(x). Equation (3.8) shows how from the behavior of
(Fn(ζp(x)|x)− F (ζp(x)|x)), we can get asymptotic results for (ζp(x)− ζp,n(x)).

4. ASSUMPTIONS AND MAIN RESULTS

From now on we assume that 0 = aG < aF and bG ≤ bF and suppose that Ti and
(Xi, Yi), 1 ≤ i ≤ N are independent. We consider two real numbers a and b such that
aF < a < b < bF .

Let B(x, h) be the ball of center x and radius h and let Wi = ‖x − Xi‖. Then
P(Xi ∈ B(x, h)) = P(Wi ≤ h) =: Fx(h). We denote by Ξ some compact subset of S
and V(u) to be a neighborhood of u.

Our assumptions are gathered here for easy reference.
(A1) There exist three functions g(·), φ(·) (which are assumed to be increasing) and
ξ0(·) such that

(i) Fx(hK) = g(x)φ(hK) + o(φ(hK)),
(ii) for all u ∈ [0, 1], limhK→0

φ(uhK)
φ(hK) = limhK→0 ξhK (u) = ξ0(u),

(iii) limhK→0 supx∈Ξ

∣∣∣Fx(hK)
φ(hK) − a1g(x)

∣∣∣ = 0, where a1 = K(1)−
∫ 1

0 K
′(u)ξh(u)du.

(A2) The kernel K is nonnegative, with compact support [0, 1] of class C1 on
(0, 1), K(0) > 0 and K(1) > 0 and its derivative K ′ is such that −∞ < C1 <
K ′(t) < C2 < 0 on (0, 1).
(A3) The conditional probability satisfies a Holder condition with respect to each
variable, that is, there exist strictly positive constants β and γ such that:

(i) for all (y1, y2) ∈ R2 and (x1, x2) ∈ ϑ(x)× ϑ(x),

|F (y1|x1)− F (y2|x2)| ≤ Cx(‖x1 − x2‖β + |y1 − y2|γ),

where ϑ(x) is a neighborhood of x, and Cx is a constant which depends on x,
(ii)

∫
R |z|

γH ′(z)dz <∞, H ′ is bounded.

(A4) The bandwidths hK and hH satisfy:

(i) limn→∞ hK = limn→∞ hH = 0,
(ii) limn→∞

logn
nφ(hK) = 0,
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(iii) limn→∞ nhK log1/2 n = +∞,
(iv) limn→∞ nhH log1/2 n = +∞.

Now we are in position to state our main results:
Theorem 4.1. Under Assumptions (A1)–(A4) we have

sup
x∈Ξ

sup
y∈[a,b]

∣∣∣Fn(y|x)− F (y|x)
∣∣∣= O

(
hβK + hγH

)
+O

((
logn
nφ(hK)

)1/2
)

a.s. as n→∞.

Theorem 4.2. Under the same assumptions as those of Theorem 4.1 and if f(y|x) > 0
for all y in a neighborhood of ζp(x) and x fixed, we have

sup
x∈Ξ
|ζp,n(x)− ζp(x)| = O

(
hβK + hγH

)
+O

((
logn
nφ(hK)

)1/2
)

a.s. as n→∞.

5. DISCUSSION OF THE ASSUMPTIONS

Remark 5.1. Assumption (A1) (i) plays an important role in our methodology. It is
known as (for small h) the concentration hypothesis acting on the distribution of X
in infinite-dimension spaces. In many examples, around zero the small ball probability
P(Wi < h) can be written approximately as the product of two independent functions
g(x) and φ(h). This idea has been adopted by [30] who reformulated it from [15], as a
condition with respect to the functional distribution of W1. The increasing assumption
on φ(·) implies that ξ·(·) is bounded and then integrable (a fortiori ξ0(·) is integrable).

We point out that even if Fx(·) depends strongly on the ball center x, but the
function can be given explicitly and asymptotically for several well-known continuous
time processes. Some examples can be found in [12]).

Assumption (A2) concerns the kernel and states conditions which are standard in
functional nonparametric estimation. Assumption (A3) is the only condition involving
the conditional probability density of Y givenX. It means that F (·|·) and its derivatives
satisfy the Lipschitz condition with respect to each variable. It is sufficiently weak not
to introduce the notion of the density for the functional random variable X, and so,
the concentration condition (A1) might play an important role. Here we point out that
our assumptions are very usual in the functional estimation for functional regressors
(see, e.g., [9]).

Assumption (A4) concerns the choice of the bandwidth which is closely linked to
the small balls probability.
Remark 5.2. Here we give an example of a Gaussian process which satisfies Assump-
tion (A1). Other examples can be found in [9] or in [11]. It is shown in Corollary 4.7.8
in [2, p. 186] that the expression of the Onsager-Machlup function of the couple (x, z),
for the Gaussian measures on a semi-normed space (F , ‖ · ‖), is given by

F (x, z) = log
(

lim
h→0

P(X ∈ B(x, h))
P(X ∈ B(z, h))

)
= 1

2‖π(z)‖2H −
1
2‖π(x)‖2H ,
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where ‖ · ‖H is the Hilbert norm on the Cameron-Martin space of F associated to
a Gaussian measure, denoted by H, and π(·) is the orthogonal projection onto the
orthogonal complement of the set {a ∈ H, such that ‖a‖ = 0}. So, in this case, the
small ball probability function Fx(h) can be written as Fx(h) = g(x)φ(h) + o(φ(h))
with

g(x) = exp
(
−1

2‖π(x)‖2H
)

and φ(h) = P (X ∈ B(0, r)) .

It is well known that the latter can be quantified for several continuous time processes
such as Gaussian processes where the function φ(h) has the following general form

φ(h) = hγ exp
(
− C
hp

)
+ o

(
hγ exp

(
− C
hp

))
for some γ > 0 and p > 0.

6. APPLICATIONS

6.1. BACK TO FINITE DIMENSIONAL SETTING AND/OR COMPLETE DATA

On the one hand, it is clear that our Theorem 4.2 extends the result existing in finite
dimensional space. Indeed, taking S = Rd it is clear that g(x) is the probability density
of X, and we get a similar result of strong consistency to that obtained in [27], where
only the pointwise consistency is stated (see Theorem 1 therein).

On the other hand, in the case where there is no truncation, that is, T = −∞, and
for the infinite dimensional setting, our result reduces to those obtained in [9] (see
Theorem 4.2 therein).

Finally, in the case of the finite-dimensional setting and no truncation, our result
reduces to that in [35] (see Theorem 1 therein).

6.2. PREDICTION

In prediction problems, the main idea is to use the conditional median µ(x) = ξp(x)
(for p = 1/2) which is a good alternative to standard methods based on the conditional
mean to achieve robustness. Note that µ(x) is estimated by µn(x) = ξ1/2, n(x). For
each n ∈ N and t ∈ R, let Xi(t), i ∈ {1, . . . , n}, be functional random variables. For
each curve Xi(t), we have a real response Yi which corresponds to some modality of
our problem. The main task is: given a new curve Xn+1(t) = xnew, can we predict the
corresponding response ynew? This is a prediction problem for infinite dimensional
explanatory random variables. The predictor estimator is obtained by computing the
quantity: ynew := µn(xnew) = ξ1/2, n(xnew).

Now applying Theorem 4.2, we have the following corollary:
Corollary 6.1.

sup
xnew∈Ξ

∣∣ζ1/2,n(xnew)− ζ1/2(xnew)
∣∣

= O
(
hβK + hγH

)
+O

((
logn
nφ(hK)

)1/2
)
a.s. as n→ +∞.
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7. SIMULATION STUDY

In this section we implement our methodology to assess the quality of predictor for
a finite sample. To this purpose, we consider the classical nonparametric functional
regression model

Y = R(X) + ε,

where ε are normally distributed and generated as N (0, 0.5). We proceed with the
following algorithm:

We fix the random size n (recall that n is known).

– Step 1. We generate the random variables T1, X1(t), t ∈ [0, 1], in the following
manner: T1 ↪→ N (µ, 1), and we adapt µ in the such way to get a different rate of
truncation, X1(t) is generated as follows:
X1(t) = AS1(t) + (1− A)S2(t) with A ↪→ B(0.5), S1(t) = 2− cos(πtW ), S2(t) =
cos(πtW ) with W ↪→ U(0, 1). Furthermore, we simulate ε1 ↪→ N (0, 0.5).

– Step 2.
We calculate Y1 = R(X1(t)) + ε1, where R(X1(t)) =

∫ 1
0 (X1(t))2dt and ε1 is as

indicated before.
– Step 3. Test:
We begin by setting:
N = 0,
j = 0,
While j ≤ n:
We put N = N + 1. We test: if Y1 < T1 we reject the triplet (X1(t), Y1, T1).
Otherwise, we keep the triplet (X1(t), Y1, T1). At the end of this count we get the
deterministic N , which permits to get the rate of truncation τ = n

N . More precisely,
the rate of the observed triplet.
We continue the process until n = 100.
We get random vectors (Xi(t), Yi, Ti), i = 1, . . . 100.

– Then we calculate the Lynden-Bell estimator with the observed couple (Yi, Ti) for
i = 1, . . . , n.
We choose the quadratic kernel:

K(x) = 3
2(1− x2)1[0,1)

and the distribution function H(·) is defined by
x∫

−∞

3
4(1− t2)1[−1,1](t)dt.

Another important point for ensuring good behavior is to use a norm that is
well-adapted to the kind of data we have to deal with. We used the norm defined
by the L1 − L2-distance between the second derivatives of the curves (for further
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discussion see [9]). This choice is motivated by the regularity of the curves X(t).
Concerning the semi-metric we have downloaded the file for choosing a different
semi-metric on the web-site of STAPH team. In this simulation, the choice of
optimal bandwidth is much more crucial than that of the kernel. Recall that here
we compute the MSE(h) on all the nearest-neighbors. For a fixed observation
of index i0 we minimize on all the distances d(Xi0 , Xi), this to avoid calculating
all the distances. In other words, we minimize on Hi0 = hk the kth distance in
increasing order, for some k, as the kernel is (0, 1)-support. This kth index allows
us to calculate our estimate from the k-nearest observations of Xi0 . This explains
the name of k-NN method.

– Step 4.
We split our data into randomly chosen subsets I and J :

(Xj , Yj , δj)j∈J training sample (Xi, Yi, δi)i∈I test sample.

– Step 5.
For each Xi in the test sample, we set: i∗ = Argminj∈Jd(Xi, Xj).

– Step 6.
We calculate our estimators in two steps. First we calculate the estimator of the
conditional distribution function given by formula (3.3) and the second step is to
calculate the conditional median by putting p = 1

2 which is described below.

Remark 7.1. Here we point out that the main idea of the downloaded subroutine, is
to use the k-NN estimator which is well adapted to our problem as mentionned before.
For a more thorough idea and for the interested reader, we cite the following references:
[6] for real data and [25] for functional type. For the choice of the bandwidth, Rachdi
and Vieu [33] recently described an automatic procedure. This choice is mainly based
on the functional version of the cross-validation (CV) method. In other words they
built some data-driven criterion and showed that the rule is asymptotically optimal
(see their Theorem 1). We think that we can use the same idea for the conditional
quantile operator to choose an optimal bandwidth. This work is beyond of the goal of
this paper and can constitute a future challenge.

Our main purpose in the first part is to illustrate the consistency property of our
estimator by examining its accuracy as a predictor in the following situations:

First study.
We fix the percentage of truncation by taking µ = 2 and we vary the sample-size
n = 100, 300, 500. For each case, we split our data into two subsets (learning sample
and test sample). From the learning sample we compute the predicted values. We
calculate the estimator ξ1/2, n(Xj) for all j ∈ J by using the training sample and
formula (3.6). Then we calculate the predictor values using the test sample.

In the following figures we plot the predicted values estimated by ξ1/2, n(Xj) versus
the true values. The continuous line represents what would be the perfect prediction.
Typically, the efficiency of the prediction method is quantified by the closeness of the
round point to this continuous line.
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Remark 7.2. We point out that unlike for complete and censored data, the explana-
tory random function X(t) is not kept in each step but only if the interest random
variable Y is bigger than the truncated random variable T .
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Fig. 1. The observed curves n = 100, MSE = 0.20
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Fig. 2. n = 300, MSE = 0.15, n = 500, MSE = 0.12

Figures 1 and 2 show the curves and the prediction which are evaluated by the
MSE. We see clearly that the quality of fit increase with the size n.
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The second study.
We fix the sample-size n = 300 and we vary the percentage of truncation by taking
µ = −1, 1, 3, 7 and 10 (see Figures 3–7).
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Fig. 3. TR = 0%, Complete data µ = −1, MSE = 0.18
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Fig. 4. TR = 12%, µ = 1, MSE = 0.20

We see clearly that the quality of fit deteriorates with the increase of the percentage
of truncation, which is predictable.
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Fig. 5. TR = 32%, µ = 3, MSE = 0.26
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Fig. 6. TR = 66%, µ = 7, MSE = 0.48
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8. AUXILLIARY RESULTS AND PROOFS

In what follows, we denote by C any generic constant which can vary from line to line.
When there is a need for two constant on the same line, we denote them by C and C ′.
First we need to introduce some notations. Similarly to formulae (3.4) and (3.5) we
define the following pseudo-estimators:

ψ̃n(x, y) = α

nφ(hK)

n∑
i=1

1
G(Yi)

K

(
‖x−Xi‖

hK

)
H

(
y − Yi
hH

)
(8.1)

and

g̃n(x) = α

nφ(hK)

n∑
i=1

1
G(Yi)

K

(
‖x−Xi‖

hK

)
. (8.2)

Proof of Theorem 4.1. The proof is based on the following decomposition

Fn(y|x)− F (y|x)

= ψn(x, y)
gn(x) − F (y|x)

= 1
gn(x)

{
ψn(x, y)− ψ̃n(x, y) + ψ̃n(x, y)−E[ψ̃n(x, y)]

− F (y|x)[gn(x)− g̃n(x) + g̃n(x)−E[g̃n(x)]]
}

− 1
gn(x)

{
αa1ψ(x, y)−E[ψ̃n(x, y)]− F (y|x)[αa1g(x)−E[g̃n(x)]]

}
.

(8.3)

The first lemma will play the role of the classical Böchner lemma in finite dimension.

Lemma 8.1. Suppose that Assumptions (A1) and (A2) hold. For all fixed x, we have

sup
x∈Ξ

∣∣∣∣ 1
φ(hK)E

[
K

(
‖x−Xi‖

hK

)]
− a1g(x)

∣∣∣∣ −→ 0 as n→ +∞. (8.4)

Proof of Lemma 8.1. Integrating by parts and by (A1) (i) and (A2), we have

1
φ(hK)E

[
K

(
‖x−Xi‖

hK

)]
= 1
φ(hK)

hK∫
0

K

(
u

hK

)
dP‖x−X1‖(u)

= K(1)Fx(hK)
φ(hK) − 1

φ(hK)

1∫
0

K ′(u)Fx(hKu)du

=

K(1)−
1∫

0

K ′(u)ξhK (u)du

 [g(x) + o(1)].

(8.5)

From Assumption (A1) (ii) it follows that the term in the right-hand-side of (8.5)
converges uniformly to a1g(x) as n→ +∞.
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Lemma 8.2. Under Assumptions (A3) (ii), (A4) (ii) and (iii) we have

sup
x∈ Ξ
|g̃n(x)−E[g̃n(x)]| = O

(
logn
nφ(hK)

)1/2
a.s. as n −→ +∞.

Proof of Lemma 8.2. Let rn be a real sequence which goes to zero at a rate given
below. The compact subset Ξ can be covered by a finite number `n of balls of radius rn
that is Ξ ⊂

⋃`n
k=1B(xk, rn). Furthermore, we suppose that there exists a positive finite

constant C such that `nrn = C. For any x ∈ Ξ, we set k(x) = arg min1≤k≤`n d(xk, x).
We have

|g̃n(x)−E[g̃n(x)]| ≤
∣∣g̃n(x)− g̃n(xk(x))

∣∣
+
∣∣g̃n(xk(x))−E[g̃n(xk(x))]

∣∣+
∣∣E [g̃n(xk(x))

]
−E[g̃n(x)]

∣∣
=: G1(x) + G2(x) + G3(x).

Then for all ε > 0,

P
{

sup
x∈Ξ
|g̃n(x)−E[g̃n(x)]| > 3ε

}
≤ P

{
sup
x∈Ξ
|G1(x)| ≥ ε

}
+ P

{
sup
x∈Ξ
|G2(x)| ≥ ε

}
+ P

{
sup
x∈Ξ
|G3(x)| ≥ ε

}
=: J1 + J2 + J3.

(8.6)

Clearly, J1 and J3 can be treated in the same manner. Then thanks to (A3) (ii) and

taking rn =
(
h2
Kφ(hK)
n

)1/2
, we get

sup
x∈Ξ
|G1(x)| ≤

α ‖K ′‖∞
∥∥x− xk(x)

∥∥
hK

=
α ‖K ′‖∞ rn
hKφ(hK) =

α ‖K ′‖∞
(nh2

Kφ(hK))1/2 .

For n large enough we have J1 = J3 = 0.
For J2, set

Vi(xk) = α

φ(hK)G(Yi)

[
K

(
‖xk −Xi‖

hK

)
−E

[
K

(
‖xk −Xi‖

hK

)]]
and then G2(xk) = 1

n

∑n
i=1 Vi(xk). So, we can get directly that

|Vi(xk)| ≤
α ‖K‖∞

φ(hK)G(aF ) = d

and by using conditional expectation property we have

E|Vi(xk)|2 ≤
Cα ‖K‖∞
φ(hK)G(aF ) = δ2.
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Thus, the use of the classical Bernstein inequality allows us to write

J2 = P
{

max
1≤k≤`n

sup
x∈B(xk,rn)

∣∣G2(xk(x))
∣∣ > ε

}
≤

`n∑
k=1

P
{

sup
x∈B(xk,rn)

∣∣G2(xk(x))
∣∣ > ε

}
≤ `n max

k=1,...,`n
P
{∣∣G2(xk(x))

∣∣ > ε
}

≤ 2 C
rn

exp
(
−nε

2φ(hK)G(aF )
α ‖K‖∞

)
.

Taking rn as before and ε = ε0

(
logn

nφ(hK)

)1/2
for ε0 > 0, we get

J2 ≤ 2C
(

logn
nhKφ(hK)

)1/2
× 1

(n2hK logn)1/2 × n
2−

C′ε2
0G(aF )

α‖K‖∞ .

Thus, by choosing
C ′ε2

0G(aF )
α ‖K‖∞

= 3 + γ with γ > 0,

we have

J2 ≤ 2C
(

logn
nhKφ(hK)

)1/2
× 1

(n2hK logn)1/2 × n
−1−γ . (8.7)

Thanks to (A4) (ii) and (iii), the upper bound becomes a general term of a convergent
Riemann series which in turn, by Borel-Cantelli’s lemma gives the result.

Lemma 8.3. Under Assumptions (A2) and (A4) we have

sup
x∈Ξ
|gn(x)− g̃n(x)| = O(n−1/2) as n −→ +∞.

Proof of Lemma 8.3. We have

sup
x∈Ξ
|gn(x)− g̃n(x)|

= sup
x∈Ξ

∣∣∣∣∣ αn
nφ(hK)

n∑
i=1

1
Gn(Yi)

K

(
‖x−Xi‖

hK

)
− α

nφ(hK)

n∑
i=1

1
G(Yi)

K

(
‖x−Xi‖

hK

)∣∣∣∣∣
≤

{
|αn − α|
Gn(aF ) + α

Gn(aF )G(aF ) sup
a≤y≤b

|Gn(y)−G(y)|
}

sup
x∈Ξ
|vn(x)|

with

vn(x) = 1
nφ(hK)

n∑
i=1

K

(
‖x−Xi‖

hK

)
.

From Theorem 3.2 in [17] we have |αn − α| = O(n−1/2),P − a.s. More-
over, Gn(aF ) P−a.s.−→ G(aF ) > 0. On the other hand, supa≤y≤b |Gn(y) − G(y)| =
O(n−1/2),P − a.s. (see Remark 6 in [38]). Using Lemma 10 of [10] and under our
assumptions, we get easily supx∈Ξ |vn(x)| = o(1) which permits us to conclude the
proof.
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The following lemma proves the asymptotic unbiasedness of the estimator g̃n(x).

Lemma 8.4. Under the same assumptions as those of Lemma 8.1 then we have

sup
x∈Ξ
|E[g̃n(x)]− αa1g(x)| −→ 0 as n→ +∞.

Proof of Lemma 8.4. We have

E[g̃n(x)] = α

φ(hK)E
[

1
G(Y1)K

(
‖x−X1‖

hK

)]
= α

φ(hK)E
[
E
[1{Y1≥T1}

G(Y1) K

(
‖x−X1‖

hK

)∣∣∣X1, Y1

]]
= α

φ(hK)E
[

1
G(Y1)K

(
‖x−X1‖

hK

)
E
[
1{Y1≥T1}

∣∣∣X1, Y1

]]
= α

φ(hK)E
[
K

(
‖x−X1‖

hK

)]
.

Making use of Lemma 8.1 we get the result.

Lemma 8.5. Under the same assumptions as those of Lemma 8.1 we have

sup
x∈Ξ

sup
a≤y≤b

|ψn(x, y)− ψ̃n(x, y)| = O(n−1/2) a.s. as n −→ +∞.

Proof of Lemma 8.5.

|ψn(x, y)− ψ̃n(x, y)| =
∣∣∣ αn
nφ(hK)

n∑
i=1

1
Gn(Yi)

K

(
‖x−Xi‖

hK

)
H

(
y − Yi
hH

)

− α

nφ(hK)

n∑
i=1

1
G(Yi)

K

(
‖x−Xi‖

hK

)
H

(
y − Yi
h

) ∣∣∣
≤

{
|αn − α|
Gn(aF ) + α

Gn(aF )G(aF ) sup
a≤y≤b

|Gn(y)−G(y)|
}
|Ψn(x, y)|

with Ψn(x, y) = 1
nφ(hK)

∑n
i=1K

(
‖x−Xi‖
hK

)
H
(
y−Yi
hH

)
.

In the same way as in the Lemma 8.3, in conjunction with Lemma 3.3 in [9] for
j = 0 we obtain

sup
x∈Ξ

sup
a≤y≤b

∣∣∣ψn(x, y)− ψ̃n(x, y)
∣∣∣ = O

(
n−1/2

)
.

Lemma 8.6. Under the same assumptions as those of Lemma 8.1 and (A4) (i), we
have

sup
x∈Ξ

sup
a≤y≤b

|ψ̃n(x, y)−E[ψ̃n(x, y)]| = O

(
logn
nφ(hK)

)1/2
a.s. as n −→ +∞.
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Proof of Lemma 8.6. For Ξ, we use the same covering as in Lemma 8.2. Since [a, b]
is a fixed compact subset of R, it can be covered by a finite number sn of inter-
vals of length [a, b] ⊂

⋃sn
t=1 It, where It = (yt − un, yt + un) and sn = C1

un
. Taking

yt = arg mint∈{t1,...,tsn} |y − t| we have

sup
x∈ Ξ

sup
y∈[a,b]

|ψ̃n(x, y)−E[ψ̃n(x, y)]|

≤ sup
x∈ Ξ

sup
y∈[a, b]

|ψ̃n(x, y)− ψ̃n(xk, y)|︸ ︷︷ ︸
T1

+ sup
x∈ Ξ

sup
y∈[a, b]

|ψ̃n(xk, y)−ψ̃n(xk, yt)]|︸ ︷︷ ︸
T2

+ sup
x∈ Ξ

sup
y∈[a, b]

|ψ̃n(xk, yt)−E[ψ̃n(xk, yt)]|︸ ︷︷ ︸
T3

+ sup
x∈ Ξ

sup
y∈[a, b]

|E[ψ̃n(xk, yt)]−E[ψ̃n(xk, t)]|︸ ︷︷ ︸
T4

+ sup
x∈ Ξ

sup
y∈[a, b]

|E[ψ̃n(xk, t)]−E[ψ̃n(x, t)]|︸ ︷︷ ︸
T5

.

(8.8)

Clearly, T1 and T5 can be treated in the same manner. We deal with T1.
As the d.f. H is bounded by 1, then we come back directly to the Lemma 8.2. Then

with the same choice of ε, we have

P
{
T1 > ε0

(
logn
nφ(hK)

)1/2
}

= P
{
T5 > ε0

(
logn
nφ(hK)

)1/2
}

= 0. (8.9)

Also, as T2 and T4 can be treated in the same manner, we deal only with T2.
Using the Lipschitz argument we get

sup
x∈ Ξ

sup
y∈[a,b]

|ψ̃n(xk, y)− ψ̃n(xk, yt)|

≤ sup
x∈ Ξ

sup
y∈[a,b]

α

nφ(hK)

n∑
i=1

1
G(Yi)

∣∣∣∣H (y − YihH

)
−H

(
yt − Yi
hH

)∣∣∣∣K (‖xk −Xi‖
hK

)

≤ sup
x∈ Ξ

sup
y∈[a,b]

C|y − yt|
hH

(
α

nφ(hK)

n∑
i=1

1
G(Yi)

K

(
‖xk −Xi‖

hK

))
≤ C αun

hHG(aF ) sup
x∈Ξ

vn(xk).

By Lemma 8.1, the upper bound of the latter becomes

O

(
Cun

hHG(aF )αa1g(x)
)

= O

(
un
hH

)
.
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Choosing un = n−ν−
1
2 with ν > 0 and by (A4) (iii), we get un

hH
= O

((
logn

nφ(hK)

)1/2
)
.

Then for n large enough and all ε > 0, we get

P
(
T2 > ε0

(
logn
nφ(hK)

)1/2
)

= P
(
T4 > ε0

(
logn
nφ(hK)

)1/2
)

= 0. (8.10)

Concerning T3, clearly we have

P (T3 > ε) ≤
`n∑
k=1

tsn∑
yt=1

P
(

sup
x∈B(xk,rn)

sup
yt∈{t1,...,tsn}

∣∣∣ψ̃n(xk, yt)−E[ψ̃n(xk, yt)]
∣∣∣ε)

≤ sn`n max
k=1,...,`n

max
yt∈{t1,...,tsn}

P
(∣∣∣ψ̃n(xk, yt)−E[ψ̃n(xk, yt)]

∣∣∣> ε
)
.

Let

λ(x, y) = K

(
‖x−Xi‖

hK

)
H

(
yt − Yi
hH

)
−E

[
K

(
‖x−Xi‖

hK

)
H

(
yt − Yi
hH

)]
.

By using similar arguments to those of the proof of Lemma 8.2 and by the fact that
H ≤ 1, we deduce that E|λ| ≤ 2 ‖K‖∞ |H| ≤ C and E|λ|2 ≤ C′α‖K‖∞

G(aF )φ(hK) .

Now, we apply Bernstein’s exponential inequality to get

P (T3 > ε) ≤ 2sn`n exp
{
−C ′nε2φ(hK)G(aF )

2α ‖K‖∞

}
= 2C
rnun

exp
{
−C ′nε2φ(hK)G(aF )

α ‖K‖∞

}
.

The same choice of rn, un and ε give that the upperbound of the latter becomes

2C
(n2h2

Kφ(hK))1/2 × n
ν+2−

C′ε2
0G(aF )

α‖K‖∞ .

Using the same choice of the power of n as in the proof of (8.7), that is, C
′ε2

0G(aF )
α‖K‖∞

=
3 + ν + γ with γ > 0, we have

P (T3 > ε) ≤ 2C
(

logn
nhKφ(hK)

)1/2
×
(

1
nhK logn

)1/2
× n−1−γ . (8.11)

Thanks to (A4) (ii) and (iii), the upper bound becomes a general term of a conver-
gent Riemann series which in turn, by Borel-Cantelli’s lemma gives the result. Now,
Lemma 8.6 can be easily deduced from (8.8)–(8.11).

Lemma 8.7. Under the same assumptions as for Lemma 8.2 there exists υ > 0 such
that ∑

n≥1
P
(

inf
x∈Ξ

g̃n(x) ≤ υ
)
<∞.
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Proof of Lemma 8.7. From the inequality

inf
x∈Ξ

g̃n(x) ≥ inf
x∈Ξ

E [g̃n(x)]− sup
x∈Ξ
|g̃n(x)−E [g̃n(x)]|

and Lemma 8.2 we get the result.

The following lemma states the asymptotic unbiasedness of the pseudo-estimator
ψ̃n(x).

Lemma 8.8. Under Assumptions (A1)–(A4) we have

sup
a≤y≤b

|E[ψ̃n(x, y)]− αa1ψ(x, y)| = O
(
hβK + hγH

)
as n −→ +∞.

Proof of Lemma 8.8. We can write

E[ψ̃n(x, y)] = α

φ(hK)E
[

1
G(Y1)K

(
‖x−X1‖

hK

)
H

(
y − Y1

hH

)]
= α

φ(hK)E
[

1
G(Y1)K

(
‖x−X1‖

hK

)
E
[
H

(
y − Y1

hK

)∣∣∣X1

]]
.

Here and after, we suppose that X1 ∈ B(x, hK).
Moreover, we have by integration by parts and changing variables,

E
[
H

(
y − Y1

hH

)∣∣∣X1

]
=
∫
R

H

(
y − u
hH

)
f(u|X1)du

=
∫
R

H ′(z)F (y − zhH |X1)dz

=
∫
R

H ′(z) [F (y − zhH |X1)− F (y|x)] dz + F (y|x).

The last equality is due to the fact that H ′(·) is a probability density.
Thus, we have

E[ψ̃n(x, y)] = α

φ(hK)E
[

1
G(Y1)K

(
‖x−X1‖

hK

)∫
R

H ′(z) [F (y − zhH |X1)− F (y|x)] dz
]

+ α

φ(hK)F (y|x)E
[

1
G(Y1)K

(
‖x−X1‖

hK

)]
= L1 + L2.

Making use of Lemma 8.4, L2 tends to αa1ψ(x, y) as n goes to infinity.
Now let us turn to L1. By Assumption (A3) (i), we have∫

R

H ′(z) |F (y − zhH |X1)− F (y|x)| dz ≤ Cx
∫
R

H ′(z)(hβK + |z|γhγH)dz

≤ CxhβK + Cxh
γ
H

∫
R

|z|γH ′(z)dz.
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Making use of (A3) (ii) and Lemma 8.4, it is clear that, L1 tends to zero as n goes to
infinity, this completes the proof of Lemma 8.8.

Now to finish the proof of Theorem 4.1, we use the following inequality

sup
x∈Ξ

sup
y∈[a, b]

|Fn(y|x)− F (y|x)|

≤ 1
infx∈Ξ gn(x) sup

x∈Ξ
sup

y∈[a, b]

∣∣∣ψn(x, y)− ψ̃n(x, y) + ψ̃n(x, y)−E[ψ̃n(x, y)]

− F (y|x) [gn(x)− g̃n(x) + g̃n(x)−E[g̃n(x)]]
∣∣∣

+ 1
infx∈Ξ gn(x) sup

x∈Ξ
sup

y∈[a, b]

∣∣∣αa1ψ(x, y)−E[ψ̃n(x, y)]−F (y|x)[αa1g(x)−E[g̃n(x)]]
∣∣∣

which together with Lemmas 8.1–8.8 concludes the proof of Theorem 4.1.

Proof of Theorem 4.2. The proof of this theorem is based in the following decomposi-
tion. As F (.|x) is a distribution function with a unique quantile of order p, then for
any ε > 0, let

η(ε) = min{F (ζp(x) + ε|x)− F (ζp(x)|x), F (ζp(x)|x− F (ζp(x)− ε|x))}

then
∀ε > 0 ∀y > 0 |ζp(x)− y| ≥ ε⇒ |F (ζp(x)|x)− F (y|x)| ≥ η(ε).

Now, using (1.3) and (3.7) we have

sup
x∈Ξ
|F (ζp,n(x)|x)− F (ζp(x)|x)| = |F (ζp,n(x)|x)− Fn(ζp,n(x)|x)|

≤ sup
x∈Ξ

sup
y∈[a, b]

|Fn(y|x)− F (y|x)|.

The consistency of ζp,n(x) follows then immediately from Theorem 4.1, the continuity
of F (.|x) and the following inequality:∑

n≥1
P(sup

x∈Ξ
|ζp,n(x)− ζp(x)| ≥ ε) ≤

∑
n≥1

P(sup
x∈Ξ

sup
y∈[a,b]

|Fn(y|x)− F (y|x)| ≥ ε).
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