PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Towards New Directions in Oxidizers/Energetic Fillers for Composite Propellants: an Overview

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is continued interest in the development of safe and reliable composite propellant formulations using modern energetic ingredients such as energetic oxidizers/energetic ingredients, energetic binders, and energetic ballistic modifiers. There are continued efforts by energetic materials researchers, scientists, technologists and engineers to design composite propellant formulations with better ballistic properties than conventional formulations. The efforts in many research and development (R & D) laboratories all over the world are aimed at utilizing modern oxidizers/ energetic fillers for the development of composite propellant formulations for both space and defence applications. Composite propellants are considered to be the major source of chemical energy for rockets and missiles. Energetic oxidizers/fillers play vital roles in the preparation or manufacture of composite propellant formulations. Various energetic oxidizers/fillers have been developed during the last five decades to address environmental safety, high energy and processing conditions. In this article, the authors have reviewed the characteristic properties of the energetic oxidizers/fillers used in the preparation of composite propellants. The characteristic properties of the energetic ingredients play an important role in the preparation of composite propellant formulations with the desired mechanical properties. The advantages and disadvantages of various energetic oxidizers/ingredients for specific and potential propellant applications are also highlighted throughout the course of this review article. The future direction in composite propellant formulations calls for the development of green propellant formulations. Efforts will continue to seek alternative and more energetic oxidizers/fillers in comparison to conventional oxidizers. There is an urgent need to replace conventional oxidizers such as ammonium perchlorate with eco-friendly ingredients.
Rocznik
Strony
377--399
Opis fizyczny
Bibliogr. 72 poz., rys., tab.
Twórcy
autor
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411021, India
autor
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411021, India
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411021, India
  • Indian Institute of Technology, Kharagpur-721302, West Bengal, India
Bibliografia
  • [1] Brügge N., India’s Solid-fuel Ballistic Missile-family Agni, (see also http://www.b14643.de/Spacerockets_1/Diverse/Agni/, 2011.
  • [2] Aziz A., Ali W.K.W., Effect of Oxidizer-fuel Mixture Ratio to the Pressure Exponent of Ammonium Perchlorate Based Composite Propellant, Appl. Mech. Mat., 2011, 110-116, 1380-1386.
  • [3] Kohga M., Tsuzuki H., Burning-rate Characteristics of Composite Propellant Using Ammonium Perchlorate Modified by Ethylene Glycol, J. Propul. Power, 2011, 27(3), 668-674.
  • [4] Kohga M., Burning Characteristics of AP/HTPB Composite Propellant Prepared with Fine Porous or Hollow AP, Proc. the 31stInternational Pyrotechnics Seminar, Fort Collins, Colorado, USA, 2004, p. 34.
  • [5] Kohga M., Burning Rate Characteristics of Composite Propellant Using Crystal Habit Modified Ammonium Perchlorate – Crystal Habit of Ammonium Perchlorate Modified by Hexane, Math. Phys. Chem. Eng., 2001, 41(1), 1-8.
  • [6] ZhouX., Energy Performance of AP/HMX/HTPB Propellant, Guti Huojian Jishu, 1996, 19(2), 26-29.
  • [7] James R.W., Propellant and Explosives, Noyes Data Corporation, New Jersey, 1974, p. 58.
  • [8] Morrow S.I., Morris Plains N.J., Oxidizers with Improved Thermal Stability and Method of Making Same, US Patent 3,708,357, 1972.
  • [9] James R.W., Propellant and Explosives, Noyes Data Corporation, New Jersey, 1974, p. 321.
  • [10] Kohga M., Okamoto K., Thermal Decomposition Behavior of AN-based Composite Propellant with Hydroxyl-terminated Polybutadiene/Polytetrahydrofuran Blend as a Binder, Sci. Tech. Energ. Mater., 2011, 72(6), 161-168.
  • [11] Kohga M., Okamoto K., Thermal Decomposition Behaviors and Burning Characteristics of Ammonium Nitrate/Polytetrahydrofuran/Glycerin Composite Propellant, Combust. Flame, 2011, 158(3), 573-582.
  • [12] Kohga M., Nishino S., Burning Characteristics of Ammonium Nitrate-based Composite Propellants Supplemented with Ammonium Dichromate, Propellants Explos. Pyrotech., 2009, 34(4), 340-346.
  • [13] James R.W., Propellant and Explosives, Noyes Data Corporation, New Jersey, 1974, 76.
  • [14] Ross M.H., Edward H.M., Solid Composite Propellants Containing Lithium Perchlorate and Polyamide Polymers, US Patent 3,094,444, 1958.
  • [15] James R.W., Propellant and Explosives, Noyes Data Corporation, New Jersey, 1974, p. 73.
  • [16] Chakravarthy S.R., Freeman J.M., Price E.W., Sigman R.K., Combustion of Propellants with Ammonium Dinitramide, Propellants Explos. Pyrotech., 2004, 29(4), 220-230.
  • [17] Korobeinichev O.P., Paletsky A.A., Tereshenko A.G., Volkov E.N., Lyon J.M., Carver J.G., Study of Combustion Characteristics of the ADN-based Propellants, 32nd Int. Annu. Conf. ICT, Karlsruhe, Germany, 2001, p. 123/1.
  • [18] Nazeri G.H., Mastour R., Fayaznia M., Mohammad K., Keyghobadi P., Synthesis of Ammonium Dinitramide by Nitration of Potassium and Ammonium Sulfamate. The Effect of Sulfamate Conterion on ADN Purity, Iran. J. Chem. Chem. Eng.,2008, 27(1), 85-89.
  • [19] Fuiisato K., Habu H., Keiichi H., Shibamoto H., Yu X., Miyake A., Combustion Mechanism of ADN-based Composite Propellant, 43rd Int. Annu. Conf. ICT, Karlsruhe, Germany, 2012, p. 26/1-26/9.
  • [20] Zhai J.X., Yang R.J., Li J.M., Study on Combustion Properties of Ammonium Dinitramide Composite Propellants (in Chinese), Beijing Ligong Daxue Xuebao, 2010, 30(11), 1374-1377.
  • [21] Mahanta A.K., Pathak D.D., Recent Advances in Development of Eco-friendly Solid Composite Propellants for Rocket Propulsion, Res. J. Chem. Environ., 2010, 14(3), 94-103.
  • [22] Korobeinichev O.P., Paletsky A.A., Tereschenko A.G., Volkov E.N., Combustion of Ammonium Dinitramide/Polycaprolactone Propellants, Proceedings of the Combustion Institute, 29(Pt. 2), Sapporo, Japan, 2002, p. 2955.
  • [23] Li S., Zhao F., Luo Y., Gao Y., Xi‘an, High Energy Composite Propellant Containing ADN and HNF, Hanneng Cailiao (in Chinese), 2004, 12(Suppl. 1), 137-142.
  • [24] De Klerk W.P.C., Van der Heijden A.E.D.M., Veltmans W.H.M., Thermal Analysis of the High-energetic Material HNF, J. Therm. Anal. Calorim., 2001, 64(3), 973-985.
  • [25] De Klerk W.P.C., van der Heijden A.E.D.M., Keizers H.L.J., Welland-Veltmans W.H.M., Prins T.N.O., Thermal and Hazard Properties of HNF/HTPB Based Propellants, 12th Symposium on Chemical Problems Connected with the Stability of Explosives, Karlsborg, Sweden, 2004.
  • [26] Jadhav H.S., Talwar M.B., Dhawale D.D., Asthana S.N., Krinamurthy V.N., Synthesis Charecterization and Thermal Behavior of Hydrazonium Nitroformate (HNF) and Its New N-alkyl Substituted Derivatives, Indian J. Chem. Technol., 2005, 12, 187-192.
  • [27] Louwers J., Dominicus A.E., Heijden M.V.D., Hydrazonium Nitroformate, US Patent 6572717B1, 1999.
  • [28] Dendage P.S., Sarwade D.B. ,Mandale A.B., Asthana S.N., Characterization and Thermal Analysis of Hydrazinium Nitroformate (HNF), J. Energ. Mater., 2003, 21(3), 167-183.
  • [29] Van der Heijden A.E.D.M, Leeuwenburgh A.B., HNF/HTPB Propellants: Influence of HNF Particle Size on Ballistic Properties, Combust. Flame, 2009, 156(7), 1359-1364.
  • [30] Athar J., Ghosh M., Dendage P.S., Damse R.S., Sikder, A.K., Nanocomposites: an Ideal Coating Material to Reduce the Sensitivity of Hydrazinium Nitroformate (HNF), Propellants Explos. Pyrotech., 2010, 35(2), 153-158.
  • [31] Bachurina I.V., Ilyushin M.A., Tselinskii I.V., Gruzdev Y.A., High-energy Complex Copper(II) Perchlorate with 1,5-Pentamethylenetetrazole as Ligand, Russ. J. Appl. Chem., 2007, 80(10), 1643-1646.
  • [32] Yang R., An H., Tan H., Combustion and Thermal Decomposition of HNIW and HTPB/HNIW Propellants with Additives, Combust. Flame, 2003, 135(4), 463-473.
  • [33] Murray W.J., Sauer C.W., Process for Preparation of bis(Trinitroethyl)amine, US Patent 3006957, 1957.
  • [34] Ungnade H.E., Kissinger L.W., Synthesis of 1,4-Dimethyl-6,7-(4′methylfurano-2′,3′)-azulene (n linderazulene), Tetrahedron, 1963, 19, 121-125.
  • [35] Kozlov L.M., Burmistrov V.I., TelkovaT.F., Vyssh I. Zaved U., Synthesis of Nitroalkyl Esters of Boric Acid, Khim. Khim. Tekhnol., 1966, 9, 63-64.
  • [36] KlapötkeT.M., Perchlorate and Halogen-free High Energy Dense Oxidizers (HEDO), SERDP Final Report WP-1765, 2011, 1-47.
  • [37] Göbel M., Dissertation, University of Munich, 2010, www.dtic.mil/cgi- bin/GetTRDoc? AD=ADA546826.
  • [38] Tawney P.O., 1,1,1,6,6,6-Hexanitrohexyne-3 and Process for Preparing Same, US Patent 3040105, 1962.
  • [39] Hill M.E., Orthoesters of 2,2,2-Trinitroethanol, US Patent 3306939, 1967.
  • [40] Ermakov A.S., Bulatov P.V., Vinogradov D.B., Tartakovskii V.A., Synthesis of New Polynitro Dicarboxylic Acid Esters, Russ. J. Org. Chem., 2004, 40, 1062-1063.
  • [41] Fayeta G., Rotureaua P., Pranaa V., Adamo C., Global and Local QSPR Models to Predict the Impact Sensitivity of Nitro Compounds, Process Saf. Prog., 2012, 31(3), 291-303.
  • [42] Peterson J.D. Wight C.A., Thermal Decomposition of Composite HMX/HTPB Propellant, JANNAF 36th Combustion Subcommittee Meeting, NASA Kennedy Space Center, 1999, 1, p. 17.
  • [43] Hussain G., Rees G.J., Thermal Decomposition of HMX and Mixtures, Propellants Explos. Pyrotech., 1995, 20(2), 74-78.
  • [44] Dey A., Behera S., Meshram D., Padale B.G., Arvind, Gupta M., High Elongation, High Energy and Low Burn Rate Propellant Composition, Indian Patent Application No: 2122/DEL/2008, DRDO, India, 2008.
  • [45] Nielsen A.T., Nissan R.A., Vanderah D., Polyazapolycyclics by Condensation of Aldehydes and Amines, J. Org. Chem., 1990, 55, 1459-1466.
  • [46] Sikder A.K., Sikder N., Gandhe B.R., Agrawal J.P., Singh H., Hexanitro Hexaaza Isowurtzitane or CL-20 in India: Synthesis and Characterisation, Def. Sci. J., 2002, 52(2), 135-146.
  • [47] Wardle R.B., Hinshaw J.C., Braithwaite P., Johnstowe G., Jones R., Poush K., Kyon V.A., Development of Cage Nitramines HNIW, Proceedings of the International Symposium On Energetic Materials Technology, American Defence Preparedness Association, 1994.
  • [48] Nair U.R., Sivabalan R., Gore G.M., Geetha M., Asthana S.N., Singh H., Hexanitro Hexaaza Isowurtzitane [CL20] and CL20 Based Formulations (Review), Combust., Explos. Shock.Wave (Engl. Transl.), 2005, 41, 121-132.
  • [49] Ou Y.,Meng Z., Liu J., Review of the Development of Application Technologies of CL-20, Huagong Jinzhan, 2007, 26(12), 1690-1694.
  • [50] Simpson R.L., Urtiew P.A., Ornellas D.L., Moody G.L., Scribner K.J, Hoffman D.M., CL-20 Performance Exceeds that of HMX and Its Sensitivity is Moderate, Propellants Explos. Pyrotech., 1997, 22, 249-255.
  • [51] Bottaro J.C., Recent Advances in Explosives and Solid Propellants, Chem. Industry, 1996, 249-253.
  • [52] Selvaraj B., Masthiraj N.V., Dhinesh Kumar S.R., Minimum-signature (Smokeless) Propellant, Inter. J. Emer. Tech. Adv. Eng., 2012, 2(4), 599-604.
  • [53] Braithwarte P.C., Hatch R.L., Lee K., Wardle R.B., Development of High Performance CL-20 Explosive Formulations, 29th Int. Annu. Conf. ICT, Karlsruhe, Germany, 1998, P.4.
  • [54] Pesce-Rodriguez R.A., US Governmental Report: AD-A 250103, 1991.
  • [55] Griffin G.W., Marchand A.P., Synthesis and Chemistry of Cubanes, Chem. Rev., 1989, 89, 997-1000.
  • [56] Marchand A.P., Synthesis of New High Energy/ High Density Monomers and Polymers, Synthesis of D3-Hexa-nitro-tris-homocubane, Proc. Naval Workshop on Energetic Crystalline Materials, Publication Office of Naval Research, Maryland, 1986.
  • [57] Stine J.R., Predictions of Crystal Density by Group Additivity, Report LA-8920, Los Alamos National Laboratory, Albuquerque, NM-1981.
  • [58] Bolton O., Simke L.R., Pagoria P.F., Matzger A.J., High Power Explosive with Good Sensitivity: A 2:1 Cocrystal of CL-20:HMX, Cryst. Growth Des., 2012, 12 (9), 4311-4314.
  • [59] Marchand A.P., Synthesis and Chemistry of Novel Polynitropolycyclic Cage Molecules, Tetrahedron, 1988, 44, 2377-2395.
  • [60] Zhang M.X, Eaton P.E., Gilardi R., Hepta- and Octa-nitrocubanes, Angew. Chem. Int. Ed. (Engl.), 2000, 39, 401-404.
  • [61] Astakhov A.M., Stepanow R.S., Yu A. Babushkin, On the Detonation Parameters of Octanitrocubane, Combust., Explos. Shock Waves (Engl. Transl.), 1998, 34, 85-87.
  • [62] Zhang G.F.J., Xiao H., Gong X., Theoretical Studies on Heats of Formation for Polynitrocubanes Using the Density Functional Theory B3LYP Method and Semiempirical MO Methods, J. Phys. Org. Chem., 2001, 14, 583-588.
  • [63] Nielsen A.T., Nirtrocarbons, VCH Verlagsgesell Schaft, Weinheim, 1995, p. 97.
  • [64] Eaton P.E., Zhang M.X., Gilardi R., Octanitrocubane: a New Nitrocarbon, Propellants Explos. Pyrotech., 2002, 27, 1-6.
  • [65] Eaton P.E., Zhang M.X., Gilardi R., The Packing of ONC Crystal, Adv. Mat., 2000, 12, 1143-1148.
  • [66] Sollot G.P., Alster J., Gilbert E.E., Research Towards Energetic Materials, J. Energ. Mater., 1986, 4, 5-28.
  • [67] Shekhar H., Studies on Empirical Approaches for Estimation of Detonation Velocity of High Explosives, Cent. Eur. J. Energ. Mater., 2012, 9(1), 39-48.
  • [68] Simpson R.L., Urtieh P.A., Ornellas D.L., Moody G.L., Seribner K.J., Hoffman D.M., CL-20 Performance Exceeds that of HMX and Its Sensitivity is Moderate, Propellants.. Explos. Pyrotech., 1997, 22, 249-255.
  • [69] Eaton P.E., Xiong Y., Gilardi R., Polynitrocubanes: Advanced High-Density, High-Energy Materials, J. Am. Chem. Soc., 1993, 115, 1019-1020.
  • [70] Smirnov A., Lempert D., Pivina T., Khakimov D., Basic Characteristics for Estimation Polynitrogen Compounds Efficiency, Cent. Eur. J. Energ. Mater., 2011, 8(4), 233-247.
  • [71] Sikder A.K., Sikder N., A Review of the Advanced High Performance, Insensitive and Thermally Stable Energetic Materials Emerging for Military and Space Applications, J. Hazard. Mater., 2004, 1-15.
  • [72] Florczak B., Theoretical Thermodynamic Combustion Properties of Composite Propellant, Materiały Wysokoenergetyczne, 1, 95-106
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c81257c-b8ce-4c45-b2c4-3daca448eedd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.