PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the content of recycled artificial leather waste particles in particleboards on their selected properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Influence of the content of recycled artificial leather waste particles in particleboards on their selected properties. Artificial leather is a layered fabric-plastic composite that resembles natural leather in appearance. Due to its wide range of advantages, artificial leather is widely used as an upholstery material in the renovation and production of furniture or even car upholstery. The aim of the research was to manage upholstery leather waste by adding previously shredded particles of artificial leather of different contents (5, 10, 25 and 50% by weight) to particleboard. Tests of selected mechanical properties (bending strength and modulus of elasticity and resistance to screw withdrawal) and physical properties (density profile, thickness swelling after immersion in water) were completed. It can be concluded that, depending on the further use of the board, there is a possibility of using the recovered artificial leather particles as a reasonable addition to wood fibres in the production of particleboard.
PL
Wpływ zawartości cząstek sztucznej skóry z recyklingu na właściwości płyt wiórowych. Sztuczna skóra to warstwowy kompozyt tkaninowo-plastikowy, który swoim wyglądem przypomina skórę naturalną. Ze względu na szeroki wachlarz zalet sztuczna skóra jest powszechnie stosowana jako materiał obiciowy w renowacji i produkcji mebli czy nawet tapicerki samochodowej. Celem badań było zagospodarowanie odpadów skór tapicerskich poprzez dodanie do płyt wiórowych uprzednio rozdrobnionych kawałków sztucznej skóry o różnej zawartości (5, 10, 25 i 50% wag.). Zakończono badania wybranych właściwości mechanicznych (wytrzymałość na zginanie i moduł sprężystości oraz odporność na wyciąganie wkrętów) oraz fizycznych (profil gęstości, pęcznienie grubości po zanurzeniu w wodzie). Można stwierdzić, że w zależności od dalszego wykorzystania płyty istnieje możliwość wykorzystania odzyskanych kawałków skaju jako rozsądnego dodatku do włókien drzewnych w produkcji płyt wiórowych.
Twórcy
  • Faculty of Wood Technology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland,
autor
  • Department of Technology and Entrepreneurship in Wood Industry, Faculty of Wood Technology/Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW
Bibliografia
  • 1. Barbu, M. C., Sepperer, T., Tudor, E. M., and Petutschnigg, A. (2020). “Walnut and hazelnut shells: Untapped industrial resources and their suitability in lignocellulosic composites,” Applied Sciences (Switzerland), 10(18). DOI: 10.3390/APP10186340.
  • 2. Borysiuk, P., Auriga, R., and Bujak, M. (2020). “Sunflower hulls as raw material for particleboard production,” News Bulletin OB-RPPD.
  • 3. EN 310 Wood-Based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength; European Committee for Standardization, Brussels, Belgium, 1993.
  • 4. EN 317 Particleboards and fiberboards – Determination of swelling in thickness after immersion in water; European Committee for Standardization, Brussels, Belgium, 1993.
  • 5. EN 319 Particleboards and fibreboards - Determination of tensile strength perpendicular to the plane of the board; European Committee for Standardization, Brussels, Belgium, 1993;
  • 6.EN 320 Particleboards and fibreboards - Determination of resistance to axial withdrawal of screws; European Committee for Standardization, Brussels, Belgium, 2011.
  • 7. EN 323 Wood-based panels - Determination of density; European Committee for Standardization, Brussels, Belgium, 1993.
  • 8. Gargano, M., Bacardit, A., Sannia, G., and Lettera, V. (2023). “From Leather Wastes back to Leather Manufacturing: The Development of New Bio-Based Finishing Systems,” Coatings, 13(4). DOI: 10.3390/coatings13040775
  • 9. Hang, L. T., Do, Q. V., Hoang, L., Nguyen, L. T., Linh, N. P. D., and Doan, V. A. (2023). “Mechanical Properties of Ternary Composite from Waste Leather Fibers and Waste Polyamide Fibers with Acrylonitrile-Butadiene Rubber,” Polymers, 15(11). DOI: 10.3390/polym15112453.
  • 10. Hoque, K. (2017). “New nonwoven textile material developed from pineapple leaf fiber.”
  • 11. Kibet, T., Tuigong, D. R., Maube, O., and Mwasiagi, J. I. (2022). “Mechanical properties of particleboard made from leather shavings and waste papers,” Cogent Engineering, Cogent, 9(1). DOI: 10.1080/23311916.2022.2076350.
  • 12. Kibet, T., Tuigong, D. R., Maube, O., and Mwasiagi, J. I. (2022). “Mechanical properties of particleboard made from leather shavings and waste papers,” Cogent Engineering,
  • 13. Mwondu, J. M., Ombui, J. N., Kironchi, G., and Onyuka, A. (2021). “Development of an Eco-friendly and Sustainable Method of Dechroming Leather Wastes,” Textile and Leather Review, 4(January), 364–391. DOI: 10.31881/TLR.2021.11.
  • 14. Nemli, G., Odabas-Serin, Z., Özdemir, F., and Ayrilmis, N. (2019). “Potential use of textile dust in the middle layer of three-layered particleboards as an eco-friendly solution,” BioResources, 14(1), 120–127. DOI: 10.15376/biores.14.1.120-127.
  • 15. Oliveira, R., Bispo, R., Trevisan, M., Gilio, C., Reis Rodrigues, F., and Silva, S. (2021). “Influence of Leather Fiber on Modulus of Elasticity in Bending Test and of Bend Strength of Particleboards,” Materials Research, 24. DOI: 10.1590/1980-5373-mr-2021-0287.
  • 16. Saha, N., Ngwabebhoh, F. A., Nguyen, H. T., and Saha, P. (2020). “Environmentally friendly and animal free leather: Fabrication and characterization,” AIP Conference Proceedings, 2289(August 2021). DOI: 10.1063/5.0028467.
  • 17. Sala, C. M., Robles, E., and Kowaluk, G. (2020). “Influence of adding offcuts and trims with a recycling approach on the properties of high-density fibrous composites,” Polymers, 12(6). DOI: 10.3390/POLYM12061327.
  • 18. Senthil, R., Kavukcu, S. B., Çakır, S., Türkmen, H., Başaran, B., and Alagumuthu, T. (2022). “Utilization of various solid leather wastes for the production of blended bricks,” Clean Technologies and Environmental Policy, Springer Berlin Heidelberg, 24(6), 1889–1901. DOI: 10.1007/s10098-022-02295-0
  • 19. Senthil, R., Kavukcu, S. B., Sinem, Ç., and Tunçay, K. A. (2023). “Efficacy of natural polymer leather sheet with papermill sludge and leather waste: a novel recycling perspective,” Clean Technologies and Environmental Policy, Springer Berlin Heidelberg, (0123456789). DOI: 10.1007/s10098-023-02534-y.
  • 20. Suchorab, B., Wronka, A., and Kowaluk, G. (2023). “Towards circular economy by valorization of waste upholstery textile fibers in fibrous wood-based composites production,” European Journal of Wood and Wood Products, Springer Berlin Heidelberg, (0123456789), 1–7. DOI: 10.1007/s00107-023-01929-4.
  • 21. Thakre, A., and Rajak, T. K. (2022). “Utilization of Waste Sole Leather with Fly Ash for Self-Compacting Concrete,” IOP Conference Series: Earth and Environmental Science, 1032(1). DOI: 10.1088/1755-1315/1032/1/01200.2
  • 22. Usenbekov, J., Seitov, B. K., Nurbay, S. K., and Abenova, I. R. (2021). “Recycling of leather and shoe waste,” The Journal of Almaty Technological University, (3), 48–52. DOI: 10.48184/2304-568x-2020-3-48-52.
  • 23. Wang, Y., Liu, C., Zhang, X., and Zeng, S. (2023). “Research on Sustainable Furniture Design Based on Waste Textiles Recycling,” Sustainability (Switzerland), 15(4). DOI: 10.3390/su15043601
  • 24. Wrzesińska-Jędrusiak, E., Czarnecki, M., Kazimierski, P., Bandrów, P., and Szufa, S. (2023). “The Circular Economy in the Management of Waste from Leather Processing,” Energies, 16(1), 0–16. DOI: 10.3390/en16010564
  • 25. Xiong, X., Yue, X., Dong, W., and Xu, Z. (2022). “Current status and system construction of used-furniture recycling in China,” Environmental Science and Pollution Research,
  • 26. Xu, M., Cao, C., Hu, H., Ren, Y., Guo, G., Gong, L., Zhang, J., Zhang, T., and Yao, H. (2022). “Perspective on the disposal of PVC artificial leather via pyrolysis: Thermodynamics, kinetics, synergistic effects and reaction mechanism,” Fuel, 327, 125082. DOI: https://doi.org/10.1016/j.fuel.2022.125082.
  • 27. Yunus, N. Y. M., Amali, N. W. A., Tamat, N. S. M., and Rahman, W. M. N. W. A. (2019). “Flexural influence on screw withdrawal behaviour of selected commercial particleboard,” International Journal of Engineering and Advanced Technology, 9(1), 5948–5951. DOI: 10.35940/ijeat.A3033.109119.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c7e22c4-9c5e-4cb8-a7f1-60f44ba35752
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.