Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article presents the technological problem related to the production of rotors with an internal permanent magnet. Most often, the magnetic circuits of such rotors used in alternating current synchronous motors (AC IPM) are made of isotropic magnetic sheets. At this point, it should be noted that it is often not taken into account that each isotropic magnetic sheet exhibits some anisotropy. This significantly affects the operational parameters of the brushless permanent magnet (PM) motor such as the cogging torque, electromagnetic torque ripples and an increase in induced voltage harmonics. To illustrate how important it is to properly design the rotor core, two rotors of the IPM motor were analyzed in this work. In the first rotor solution, minimization of the magnetic sheet anisotropy was not taken into account, and the skew of the magnets was not used. In the second case of the IPM motor, the problem of rotor magnetic circuit anisotropy was minimized and an additional skew of the PMs was used. The obtained measurements and calculations of selected useful parameters of both rotor designs were then compared with each other. Importantly, the conclusions drawn and the resulting comments will prove useful to designers, assemblers and manufacturers of electrical machine components.
Rocznik
Tom
Strony
art. no. e153433
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
- Rzeszow University of Technology, Faculty of Electrical and Computer Engineering, Rzeszow, Poland
autor
- Opole University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics, Opole, Poland
autor
- Rzeszow University of Technology, Faculty of Electrical and Computer Engineering, Rzeszow, Poland
autor
- Rzeszow University of Technology, Faculty of Electrical and Computer Engineering, Rzeszow, Poland
Bibliografia
- [1] A. Schoppa, J. Schneider, and C.D. Wuppermann, “Influence of the manufacturing process on the magnetic properties of non-oriented electrical steels,” J. Magn. Magn. Mater., vol. 215–216, pp. 100–102, 2000, doi: 10.1016/S0304-8853(00)00070-6.
- [2] T. Chevalier, A. Kedous-Lebouc, and B. Cornut, “Influence of electrical sheet with on dynamic magnetic properties,” J. Magn. Magn. Mater., vol. 215–216, pp. 623–625, 2000, doi: 10.1016/S0304-8853(00)00244-4.
- [3] M. Dems, Z. Gmyrek, and K. Komenza, “The influence of cutting technology on magnetic properties of non-oriented electrical steel-review state of the art,” Energies, vol. 16, no. 11, p. 4299, 2023, doi: 10.3390/en16114299.
- [4] S. Żurek, P. Borowik, and K. Chwastek, “Anizotropia stratności wybranych bach elektrotechnicznych,” Prz. Elektrotechniczny, vol. 94, no. 2, pp. 96–99, 2018, doi: 10.15199/48.2018.02.23 (in Polish),
- [5] W. Mazgaj, Z. Szular, and A. Warzecha, “Influence of magnetic anisotropy on flux density changes in dynamo steel sheets,” Arch. Electr. Eng., vol. 64, no. 1, pp. 81–88, 2015, doi: 10.1515/aee-2015-0008.
- [6] E. Napieralska-Juszczak and K. Komęza, Modelowanie pola elektromagnetycznego w rdzeniach anizotropowych, Monografia Politechniki Łódzkiej, Poland, 2012 (in Polish).
- [7] M. Soiński, “Nowoczesne materiały magnetyczne miękkie w technice,” Prz. Elektrotechniczny, vol. 1999, no. 9, pp. 219–223, 1999 (in Polish).
- [8] M. Mnich, M. Wilk, and W.A. Pluta, “Określenie relacji pomiędzy anizotropią i parametrami modelu ODF strat mocy w blachach elektrotechnicznych,” Prz. Elektrotechniczny, vol. 2020, no. 5, pp. 66–63, 2020, doi: 10.15199/48.2020.05.13 (in Polish).
- [9] K.R. Chwastek, A.P.S. Baghel, M.F. de Campos, S.V. Kulkarni, and J. Szczygłowski, “A Description for the Anisotropy of Magnetic Properties of Grain-Oriented Steels,” IEEE Trans. Magn., vol. 51, no. 12, pp. 1–6, 2015, doi: 10.1109/TMAG.2015.2449775.
- [10] M. Korkosz, P. Bogusz, and J. Prokop, “Complex Performance Analysis and Comparative Study of Very High-Speed Switched Reluctance Motors,” IEEE Trans. Magn., vol. 55, no. 8, pp. 1–14, 2019, doi: 10.1109/TMAG.2019.2910492.
- [11] X. Zhu, W. Hua, Z. Wu, W. Huang, H. Zhang, and M. Cheng, “Analytical approach for cogging torque reduction in flux-switching permanent magnet machines based on magnetomotive force-permeance model,” IEEE Trans. Ind. Electr., vol. 65, pp. 1965–1979, 2018, doi: 10.1109/TIE.2017.2739688.
- [12] L. Zhu, S.Z. Jiang, Z.Q. Zhu, and C.C. Chan, “Analytical methods for minimizing cogging torque in permanent-magnet machines,” IEEE Trans. Magn., vol. 45, no. 4, pp. 2023–2031, 2009, doi: 10.1109/TMAG.2008.2011363.
- [13] A. Daikoku, S. Yamaguchi, Y. Toide, K. Fujiwara, and N. Takahashi, “Cogging torque estimation of permanent magnet motors resulting from magnetic anisotropy of non-oriented electrical steel sheets,” IEEE Trans. Ind. Electr., vol. 34, no. 2, pp. 205–215, 1987, doi: 10.1541/ieejias.126.1712.
- [14] M. Caruso, A.O. Di Tommaso, R. Miceli, and F. Viola, “A cogging torque minimization procedure for interior permanent magnet synchronous motors based on a progressive modification of the rotor lamination geometry,” Energies, vol. 15, no. 14, p. 49569, 2022, doi: 10.3390/en15144956.
- [15] Z. Zhang et al., “Research on the influence of trapezoidal magnetization of bonded magnetic ring on cogging torque,” Open Phys., vol. 21, no. 1, pp. 1–8, 2022, doi: 10.1515/phys-2022-0223.
- [16] Y.B. Yang, X.H. Wang, and C.Q. Zhu, “Effect of permanent magnet segmentation on the cogging torque of surface mounted permanent magnet motors,” Trans. Chin. Electrotech. Soc., vol. 27, no. 3, pp. 73–78, 2012.
- [17] J.W. Jiang, B. Bilgin, Y. Yang, A. Sathyan, H. Dadkhah, and A. Emadi, “Rotor skew pattern design and optimisation for cogging torque reduction,” IET Electr. Syst. Transport., vol. 6, no. 2, pp. 126–135, 2016, doi: 10.1049/iet-est.2015.0021.
- [18] M. Korkosz and A. Mlot, “Torque ripple reduction by using multi-slice FE modelling of brushless DC motor with skewed magnets,” Zeszyty Problemowe – Maszyny Elektryczne, no. 86, pp. 105–108, 2010, (in Polish).
- [19] K. Abbaszadeh, F. Rezaee Alam, and M. Teshnehlab, “Slot opening optimization of surface mounted permanent magnet motor for cogging torque reduction,” Energy Conv. Manag., vol. 55, pp. 108–115, 2012, doi: 10.1016/j.enconman.2011.10.014.
- [20] M. Muteba, and D.V. Nicolae, “Influence of mixed winding arrangements on torque ripples of five-phase induction machines,” Electr. Power Syst. Res., vol. 151, pp. 154–165, 2017, doi: 10.1016/j.epsr.2017.05.027.
- [21] Y.X. Li, Z.Q. Zhu, and G. Li, “Influence of stator topologies on average torque and torque ripple of fractional-slot SPM machines with fully closed slots,” IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2151–2164, 2018, doi: 10.1109/TIA.2018.2799178.
- [22] T. Nur, L.E. Joe, and M. Siregar, “Novel of cogging torque reduction technique for permanent magnet generator by compounding of magnet edge shaping and dummy slotting in stator core,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 3, pp. 1191–1199, 2020, doi: 10.18517/ijaseit.10.3.10372.
- [23] J. Wanjiku, M.A. Khan, P.S. Barendse, and P. Pillay, “Influence of slot openings and tooth profile on cogging torque in axial-flux PM machines,” IEEE Trans. Ind. Appl., vol. 62, no. 12, pp. 7578–7589, 2015, doi: 10.1109/TIE.2015.2458959.
- [24] S. Wang, J. Hong, Y. Sun, and H. Cao, “Effect comparison of zigzag skew PM pole and straight skew slot for vibration mitigation of PM brush DC motors,” IEEE Trans. Ind. Electron., vol. 67, pp. 4752–4761, 2020, doi: 10.1109/TIE.2019.2927175.
- [25] Ansys, www.ansys.com/products/electronics, 2024.
- [26] S. Lipiński and J. Zawilak, “ Influence of voltage harmonic distortion on temperature distribution in line-start permanent magnet synchronous motor,” Napędy i Sterowanie, no. 10, pp. 102–107, 2017, (in Polish).
- [27] D. Hanselman, Brushless permanent magnet motor design, 2nd edition, Orono, USA: Magna Physics Publishing, 2006, pp. 3–379.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c7d8d01-3bc8-4bd6-a4b1-a7845ce910ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.