Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents equilibrium mechanics and a finite element model for analysing a scissor structure that contains pivots with zero bending stiffness representing structural instability. The pivot at the centre of each structural unit, which is a feature of scissor structures, can be used to transfer the displacement between the units. It cannot, however, transfer the rotation between these units, and the angular stiffness must be considered independently for each unit. To construct a general model of the scissor structure, a scissor unit was developed using the left and right boundary connections of adjacent units to simulate a periodically symmetric structure. The proposed method allows us to obtain an accurate distribution of the internal forces and deflections without the use of special elements to account for central pivots.
Rocznik
Tom
Strony
1319--1332
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Hiroshima University, 1-4-1 Kagamiyama Higashi-hiroshima, Japan
autor
- Hiroshima University, 1-4-1 Kagamiyama Higashi-hiroshima, Japan
autor
- Shinshu University, Nagano, Japan
autor
- Tohoku Gakuin University, Tagajo, Japan
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland
Bibliografia
- [1] F.Y. Yeh et al., “A novel composite emergency bridge for disaster rescue”, The 15th World Conference on Earthquake Engineering (15WCEE), Lisbon, Portugal (2012).
- [2] A.M.A.J. Teixeira, M.S. Pfeil, and R.C. Battista, “Structural evaluation of a GFRP truss girder for a deployable bridge”, Compos. Struct. 110, 29–38 (2014).
- [3] W. Krason and J. Malachowski, “Field test and numerical studies of the scissors-AVLB type bridge”, Bull. Pol. Ac.: Tech. 62(1), 103–112 (2014).
- [4] H.H. Hung, Y.C. Sung, K.C. Chang, S.H. Yin, and F.Y. Yeh, “Experimental testing and numerical simulation of a temporary rescue bridge using GFRP composite materials”, Constr. Build. Mater. 114, 181–193 (2016).
- [5] O. Benjeddou, O. Limam, and M. B. Ouezdou, “The experimental and the theoretical analysis of the serviceability behavior of a deployable footbridge”, Arch. Civ. Mech. Eng. 17(2), 293–306 (2017).
- [6] T. Lewiński, T. Sokół, and C. Graczykowski, Michell Structures, Springer, 2019.
- [7] Y. Wang, A.P. Thrall, and T.P. Zoli, “Adjustable module for variable depth steel arch bridges”, J. Constr. Steel. Res. 126, 163–173 (2016).
- [8] A. Beukers and Ed. Van Hinte, The Inevitable Renaissance of Minimum Energy Structures, 010 publishers, Rotterdam 2005.
- [9] C. Graczykowski and P. Pawlowski, “Mathematical Modelling of Adaptive Skeletal Structures for Impact Absorption and Vibration Damping”, Procedia Eng. 199, 1671–1676 (2017).
- [10] I. Ario, M. Nakazawa, Y. Tanaka, I. Tanikura, and S. Ono, “Development of a prototype deployable bridge based on origami skill”, Autom. Constr. 32, 104–111 (2013).
- [11] Y. Chikahiro et al., “Experimental and numerical study of fullscale scissor type bridge”, Autom. Constr. 71(2), 171–180 (2016).
- [12] Y. Chikahiro, I. Ario, and M. Nakazawa, “Theory and Design Study of a Full-Scale Scissors-Type bridge”, J. Bridge Eng. (ASCE) 21(9), (2016).
- [13] N. Veuve, A.C. Sychterz, and I.F.C. Smith, “Adaptive control of a deployable tensegrity structure”, Eng. Struct. 152, 14–23 (2017).
- [14] Y. Chikahiro et al., “Dynamics of the scissors-type Mobile Bridge”, Procedia Eng. 199, 2919–2924 (2017).
- [15] Y. Chikahiro, I. Ario, P. Pawłowski, C. Graczykowski, and J. Holnicki-Szulc “Optimization of reinforcement layout of scissor type bridge using differential evolution algorithm”, Comput.-Aided Civil Infrastruct. Eng. 34(6), 523–538 (2019).
- [16] M.J. Turner, R.W. Clough, H.C. Martin, and L.J. Topp, “Stiffness and Deflection Analysis of Complex Structures”, Int. J. Aeronaut. Sci. 23(9), 805–823 (1956).
- [17] K. Ikeda and K. Murota, Imperfect Bifurcation in Structures and Materials: Engineering Use of Group-Theoretic Bifurcation Theory, Springer-Verlag, New York, 2002.
- [18] F. Kovács, “Extended truss theory with simplex constraints”, Int. J. Solids Struct. 48(3‒4), 472–482 (2011).
- [19] C.T. Sun and R.S. Vaidya, “Prediction of composite properties from a representative volume element”, Compos. Sci. Technol. 56(2), 171‒179 (1997).
- [20] I. Ario and M. Nakazawa, “Analysis of multiple bifurcation behavior for periodic structures”, Proc. of 4th Polish Congress of Mechanics and 23rd International Conference on Computer Methods in Mechanic, Krakow, Poland (2019).
- [21] I. Ario and M. Nakazawa, “Analysis of Multiple Bifurcation Behaviour for Periodic Structures”, Arch. Mech. 72(4), 1–24 (2020).
- [22] D. Hower, S. Yu, T.M. Ricks, B.A. Bednarcyk, and J. Simon, “Weave geometry generation avoiding interferences for mesoscale RVEs”, J. Mater. Sci. Technol. 35(12), 2869–2882 (2019).
- [23] I. Ario, Y. Chikahiro, M. Nakazawa, J. Holnicki-Szulc, P. Pawlowski, and C. Graczykowski, “Structural Analysis of a two-unit of Scissors Structure”, Proc. of Solid Mechanics (Solmech), Warsaw, Poland (2016).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c7d5632-ec18-436d-9924-10bd6a9a1079