PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Synergistic performance degradation of marine structural elements: case study of polymer-based composite and steel hybrid double lap joint

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The degradation of structures under the influence of a marine environment tends to be rapid and disruptive compared to that of structures that are far away from these influences. Efforts to consider these impacts in the design phase are increasing, with a view to the construction of more sustainable structures. However, experimental data from which designers and builders can benefit cannot be found in the relevant literature, especially when it comes to the effects of composite degradation. In this study, we experimentally investigate the combined effects of degradation factors such as a drying-wetting cycle, the shape of the structure, the variety of materials used in the structure, and the differences in the manufacturing of the materials . The structure chosen as an example is a hybrid structural double lap joint composed of epoxy resin, fibreglass composite, and steel, which is widely used in ship structures. The experiments considered four aging periods (zero, 30, 60 and 90 days) under a wet-dry cycle in a programmable corrosion chamber, two overlap lengths (short and long), two surface roughnesses of the steel parts (50 and 90 μm), and two surface preparation alternatives (uncoated and coated with epoxy primer). The synergistic effects of these parameters on the tensile strength, deformation and toughness of the joints were evaluated, and suggestions are made for ship designers. The attention of interested parties, and particularly ship designers, is drawn to the comparative effects of these degradation agents on performance.
Rocznik
Tom
Strony
111--118
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Dokuz Eylül University Graduate School of Natural and Applied Sciences, Turkey
  • Dokuz Eylul University Institute of Marine Sciences and Technology, Turkey
Bibliografia
  • 3. A. R. Prased, A. Kunyankandy and A. Joseph, “Corrosion inhibition in oil and gas industry: Economic considerations,” in Corrosion Inhibition in Oil and Gas Industry, V.S. Saji and S.A. Umoren, eds. 2020, pp. 135-150, Wiley-VCH Verlag GmbH & Co. KGaA.
  • 4. A. S. Maxwell, W. R. Broughton, G. Dean, and G. D. Sims, Review of Accelerated Ageing Methods and Lifetime Prediction Technique for Polymeric Materials. Middlesex: National Physical Laboratory Report DEPC MPR 016, 2005.
  • 5. M. Z. Y. Ting, K. S. Wong, M. E. Rahman, and S. J. Meheron, “Deterioration of marine concrete exposed to wetting-drying action,” J Celan Prod, no. 278, p. 123383, 2021, https://doi.org/10.1016/j.jclepro.2020.123383.
  • 6. A. P. Mouritz, E. Gellert, P. Burchill, and K. Challis, “Review of advanced composite structures for naval ships and submarines,” Compos Struct, vol. 53, no. 1, pp. 21–41, 2001, https://doi.org/10.1016/S0263-8223(00)00175-6.
  • 7. J. Cao and J. L. Grenestedt, “Design and testing of joints for composite sandwich/steel hybrid ship hulls,” Compos Part A- Appl S, no. 35, pp. 1091–1105, 2004, https://doi. org/10.1016/j.compositesa.2004.02.010.
  • 8. M. A. G. Silva, B. S. Da Fonseca, and H. Biscaia, “On estimates of durability of FRP based on accelerated tests,” Compo Structures, no. 116, pp. 377–287, 2014, https://doi. org/10.1016/j.compstruct.2014.05.022.
  • 9. J. D. Garcia-Espinel, D. Castro-Fresno, P. P. Gayo, and F. Ballester-Munoz, “Effect of sea water environment on glass fiber reinforced plastic materials used for marine civil engineering constructions,” Mater Design, no. 66, pp. 46–50, 2015, https://doi.org/10.1016/j.matdes.2014.10.032.
  • 10. E. J. Trujillo, C. R. Gonzales, and J. A. R. Gonzales, “Seawater aging effect on the mechanical properties of composites with different fiber and matrix types,” Compos Mater, vol. 53, no. 23, pp. 3229–3241, 2019, https://doi. org/10.1177/0021998318811514.
  • 11. L. J. Malvar, “Durability of composites in reinforced concrete,” in Proc. of CDCC’98, First International Conference on Durability of Composites for Construction, 1998, Sherbrooke, Québec, p. 1–12.
  • 12. N. Thaulow and S. Sahu, “Mechanism of concrete deterioration due to salt crystallization,” MaterCharact, vol. 53, no. 2–4, pp.123–127, 2004, https://doi:10.1016/j. matchar.2004.08.013.
  • 13. E. Nadelman and K. Kurtis, “Durability of Portlandlimestone cement-based materials to physical salt attack,” Cement Concrete Res, no. 125, p. 105859, 2019, https://doi. org/10.1016/j.cemconres.2019.105859.
  • 14. E. P. Gellert and D. M. Turley, A Comparison of Normal and Accelerated Ageing of GRP Laminates Immersed in Seawater, Report No. DSTO-TR-0668, Melbourne: Department of Defense Science and Technology Organization (DSTO) Aeronautical and Maritime Research Laboratory, 1998.
  • 15. K. K. Guan, “Surface and ambient air temperatures associated with different ground material: A case study at the University of California, Berkeley,” EnvironmSci, no. 196, pp. 1–14, 2011.
  • 16. C. L. Tan, N. H. Wong, and S. K. Jusuf, “Effects of vertical greenery on mean radiant temperature in the tropical urban environment,” Landscape Urban Plan, no. 127, pp. 52–64. 2014, https://doi.org/10.1016/j.landurbplan.2014.04.005.
  • 17. A. Alhozaimy, R. R. Hussain, R. Al-Zaid, and A. Al-Negheimish, “Coupled effect of ambient high relative humidity and varying temperature marine environment on corrosion of reinforced concrete,” Constr Build Mater, vol. 28, no. 1, pp. 670–679, 2012, https://doi.org/10.1016/j. conbuildmat.2011.10.008.
  • 18. B. S. Phull, S. J. Pikul, and R. M. Kain, “Thirty-eight years of atmospheric corrosivity monitoring,” in: S. W. Dean, G. H. D. Delgaldillo, and J. B. Bushman, eds. Marine Corrosion in Tropical Environments, ASTM STP 1399, West Conshohocken, PA: American Society for Testing and Materials, pp. 60–74, 2000.
  • 19. X. Li, Z. Zhu, Y. Li, and Z. Hu. “Design and mechanical analysis of a composite T-type connection structure for marine structures,” Pol Marit Res, vol. 27, pp. 145–156, 2020, https://doi.org/ 10.2478/pomr-2020-0036.
  • 20. N. Choupani, “Characterization of fracture in adhesively bounded double-lap joints,” Intl JAdhes Adhes, vol. 29, no. 8, pp. 761–773, 2009, https://doi.org/10.1016/j. ijadhadh.2009.05.002.
  • 21. R. E. Bohlman and J. H. Fogarty, “Demonstration of a composite to steel deck joint on a navy destroyer,” in Proc. 9th International Conference on Marine Applications of Composite Materials, Melbourne, Florida, USA, pp. 19–21, 2002.
  • 22. A. K. Mitra and B. Ghosh, “Interfacial stresses and deformations of an adhesive bounded double strap butt joint under tension,” Compos Struct, vol. 55, no. 4, pp. 687– 694, 1995, https://doi.org/10.1016/0045-7949(94)00430-B.
  • 23. J. Y. Le Lan, P. Livory and P. Parneix, “Steel/composite bonding principle used in the connection of composite superstructure to metal hull,” in Proc. 2nd International Conference on Sandwich Construction, vol. II, Gainesville, Florida, USA, 9–12 March 1992, pp. 857–872.
  • 24. H. Osnes and D. McGeorge, “Experimental and analytical strength analysis of double-lap joints for marine applications,” Compos Part B- Eng, no. 40, pp. 29–40, 2009, https://doi.org/10.1016/j.compositesb.2008.07.002.
  • 25. N. N. Yang, T. Y. Zhao, J. G. Gu, and Z. P. Chen, “Damage and fracture analysis of bolted joints of composite materials based on peridynamic theory,” Pol Marit Res, vol. 26, pp. 22–32, 2019, https://doi.org/ 10.2478/pomr-2019-0022.
  • 26. Z. Zhu, X. Li, Q. Chen, Y. Cai, and Y. Xiong, “Simulations and tests of composite marine structures under low-velocity impact,” Pol Mar Res, vol. 28, no. 1(109), pp. 59–71, 2021, https://doi.org/ 10.2478/pomr-2021-0006.
  • 27. J. P. B. Van Dam, S. T. Abrahami, A. Yilmaz, Y. Gonzales-Garcia, H. Terryn and J. M. C. Mol, “Effect of surface roughness and chemistry on the adhesion and durability of a steel-epoxy adhesive interface,” Int J Adhes Adhes, no. 92, p. 102450, 2020, https://doi.org/10.1016/j. ijadhadh.2019.102450.
  • 28. ASTM D3528-96, Standard Test Method for Strength Properties of Double Lap Shear Adhesive Joints by Tension Loading, ASTM International, West Conshohocken, PA, 2016.
  • 29. Metyx Composites Inc., “Multiaxials,” 2022. [Online] Available: http://tr.metyx.com/cokyonlorguler.html# [Accessed: July 17, 2022].
  • 30. Duratek Inc., “Epoxy and Polyurethane Systems,” 2022. [Online] Available: http://www.duratek.com.tr/eng/ products/composite/product-list/ [Accessed: July 17, 2022].
  • 31. Erdemir Corp., “Products,” 2002. [Online] Available: https://www.erdemir.com.tr/corporate/products-andservices/products/ [Accessed: July 17, 2022].
  • 32. T. Niksa-Rynkiewicz, M. Landowski, and P. Szalewski, “Application of Apriori algorithm in the lamination process in yacht production,” Pol Marit Res, vol. 27, no. 3(107), pp. 59–70, 2020, https://doi.org/ 10.2478/pomr-2020-0047.
  • 33. ASTM B117-16, Standard Practice for Operating Salt Spray (Fog) Apparatus. ASTM International, West Conshohocken, PA, 2016.
Uwagi
PL
Numeracja w bibliografii zaczyna się od nr 3.
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c748dfe-6ff3-4ddc-acba-3a90b452fb34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.