PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improvement of Technological Modes of Electrodialysis Apparatus for Treatment of Chromium-Containing Waste Waters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The wastewaters of galvanizing plants contain toxic heavy metals, which causes pollution of the environment and endangers it. The aim of the present study includes concentration of chromium (VI) ions from chromium plating wastewaters, purification of wastewater and its reuse for development of waste-free technological cycle. This study was carried out with the pilot electrodialysis apparatus designed by the authors and produced in the Institute engineering workshop using real plating rinse water of the plating shop. The authors obtained desalinated water which may be recirculated in rinsing bath and chromium salts concentrate that can be applied in chromium plating bath after correction. As a result of the conducted experiment, the ion-exchange membranes resistant to "poisoning" with chromium (VI) ions and stable in the process of regeneration were selected and the technological modes for stable operation of apparatus matched.
Twórcy
  • Agrarian and Membrane Technologies Scientific Research Institute of Shota Rustaveli State University,5, Grishashvili st., 6010, Batumi, Georgia
  • Agrarian and Membrane Technologies Scientific Research Institute of Shota Rustaveli State University,5, Grishashvili st., 6010, Batumi, Georgia
  • Agrarian and Membrane Technologies Scientific Research Institute of Shota Rustaveli State University,5, Grishashvili st., 6010, Batumi, Georgia
  • Agrarian and Membrane Technologies Scientific Research Institute of Shota Rustaveli State University,5, Grishashvili st., 6010, Batumi, Georgia
  • Agrarian and Membrane Technologies Scientific Research Institute of Shota Rustaveli State University,5, Grishashvili st., 6010, Batumi, Georgia
Bibliografia
  • 1. Adhoum, N., Monser, L., Bellakhal, N., & Belgaied, J. 2004. Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation. Journal of Hazardous Materials, 112(3), 207–213.
  • 2. Alekseeva, S.L., Bolotin, S.N., & Tsyupko, T.G. 2007. Sorption of chromium(VI) on ion-exchange resins and sorbents. Russian Journal of Applied Chemistry, 80(3), 376–378.
  • 3. Alvarado, L., Ramírez, A., & Rodríguez-Torres, I. 2009. Cr(VI) removal by continuous electrodeionization: Study of its basic technologies. Desalination, 249(1), 423–428.
  • 4. Arslan, G., & Pehlivan, E. 2007. Batch removal of chromium(VI) from aqueous solution by Turkish brown coals. Bioresource Technology, 98(15), 2836–2845.
  • 5. Barakat, M. 2011. New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361–377.
  • 6. Dalla Costa, Roni F., Klein, Cláudia W., Bernardes, Andrea M., & Zoppas Ferreira, Jane. Evaluation of the electrodialysis process for the treatment of metal finishing wastewater. 2002. Journal of the Brazilian Chemical Society, 13(4), 540-547.
  • 7. Fu, F., & Wang, Q. 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418.
  • 8. Gao, P., Chen, X., Shen, F., & Chen, G. 2005. Removal of chromium(VI) from wastewater by combined electrocoagulation and electroflotation without a filter. Separation and Purification Technology, 43(2), 117–123.
  • 9. Gayathri, R., & Senthil Kumar, P. 2010. Recovery and reuse of hexavalent chromium from aqueous solutions by a hybrid technique of electrodialysis and ion exchange. Brazilian Journal of Chemical Engineering, 27(1), 71–78.
  • 10. Gubari, M., Zwain, H., Al-Zahiwat, M., & Alekseeva, N. 2021. Characteristics of the MK-40 and MA-40 Membranes for Industrial Wastewater Treatment – A Review. Ecological Engineering & Environmental Technology, 22(1), 39–50.
  • 11. Gode, F., & Pehlivan, E. Removal of chromium(III) from aqueous solutions using Lewatit S 100: The effect of pH, time, metal concentration and temperature. 2006. Journal of Hazardous Materials, 136(2), 330–337.
  • 12. Gurreri, L., Tamburini, A., Cipollina, A., & Micale, G. 2020. Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. Membranes, 10(7), 146. https://doi.org/10.3390/membranes10070146
  • 13. Hirpara, P., Nikhil, B., & Murty, D.S. 2011. Bacterial Treatment For Removal of Chromium (Vi) Containing Electroplating Waste Waters. Indian Journal of Applied Research, 4(6), 436–438.
  • 14. Judd, S., & Jefferson, B. (2003). Membranes for Industrial Wastewater Recovery and Re-use. Elsevier. Gezondheidszorg.
  • 15. Khan, M., Luque, R., Akhtar, S., Shaheen, A., Mehmood, A., Idress, S., Buzdar, S., & Rehman, and Electrodialysis Studies for Water Desalination. Materials, 9(5), 365.
  • 16. Korus, I., & Loska, K. 2009. Removal of Cr(III) and Cr(VI) ions from aqueous solutions by means of polyelectrolyte-enhanced ultrafiltration. Desalination, 247(1–3), 390–395.
  • 17. Kozlowski, C.A., & Walkowiak, W. 2002. Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes. Water Research, 36(19), 4870–4876.
  • 18. Marder, L., Bernardes, A. M., & Zoppas Ferreira, J. 2004. Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system. Separation and Purification Technology, 37(3), 247–255.
  • 19. Mangaiyarkarasi, M., Vincent, S., Janarthanan, S., Subba Rao, T., & Tata, B. 2011. Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups. Saudi Journal of Biological Sciences, 18(2), 157–167.
  • 20. Mauritz, K.A., & Moore, R.B. 2004. State of Understanding of Nafion. Chemical Reviews, 35(50), 4535–4586.
  • 21. Melnikov, S., & Shkirskaya, S. 2019. Transport properties of bilayer and multilayer surface-modified ion-exchange membranes. Journal of Membrane Science, 590, 117272.
  • 22. Mirbagheri, S., & Hosseini, S. 2005. Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse. Desalination, 171(1), 85–93.
  • 23. Moura, R.C.A., Bertuol, D.A., Ferreira, C.A., & Amado, F.D.R. 2012. Study of Chromium Removal by the Electrodialysis of Tannery and Metal-Finishing Effluents. International Journal of Chemical Engineering, 2012, 1–7.
  • 24. Nataraj, S., Hosamani, K., & Aminabhavi, T. 2007. Potential application of an electrodialysis pilot plant containing ion-exchange membranes in chromium removal. Desalination, 217(1–3), 181–190.
  • 25. Noubli, A., Akretche, D.E., Crespo, J.G., & Velizarov, S. 2020. Complementary membrane-based processes for recovery and preconcentration of phosphate from industrial wastewater. Separation and Purification Technology, 234, 116123.
  • 26. Peng, C., Meng, H., Song, S., Lu, S., & Lopez‐ Valdivieso, A. 2005. Elimination of Cr(VI) from Electroplating Wastewater by Electrodialysis Following Chemical Precipitation. Separation Science and Technology, 39(7), 1501–1517.
  • 27. Petrov, S., & Nenov, V. 2004. Removal and recovery of copper from wastewater by a complexation-ultrafiltration process. Desalination, 162, 201–209.
  • 28. Sadyrbaeva, T.Z. 2016. Removal of chromium(VI) from aqueous solutions using a novel hybrid liquid membrane-electrodialysis process. Chemical Engineering and Processing: Process Intensification, 99, 183–191.
  • 29. Saf, A., Alpaydin, S., Coskun, A., & Ersoz, M. 2011. Selective transport and removal of Cr(VI) through polymer inclusion membrane containing 5-(4-phenoxyphenyl)-6H-1,3,4-thiadiazin- 2-amine as a carrier. Journal of Membrane Science, 377(1–2), 241–248.
  • 30. San Román, M., Ortiz Gándara, I., Ibañez, R., & Ortiz, I. 2012. Hybrid membrane process for the recovery of major components (zinc, iron and HCl) from spent pickling effluents. Journal of Membrane Science, 415–416, 616–623.
  • 31. Santiago, A.A., Vargas, J., Fomine, S., Gaviño, R., & Tlenkopatchev, M. A. 2010. Polynorbornene with pentafluorophenyl imide side chain groups: Synthesis and sulfonation. Journal of Polymer Science Part A: Polymer Chemistry, 48(13), 2925–2933.
  • 32. Sarapulova, V., Shkorkina, I., Mareev, S., Pismenskaya, N., Kononenko, N., Larchet, C., Dammak, L., & Nikonenko, V. 2019. Transport Characteristics of Fujifilm Ion-Exchange Membranes as Compared to Homogeneous Membranes АМХ and СМХ and to Heterogeneous Membranes MK-40 and MA-41. Membranes, 9(7), 84. https://doi.org/10.3390/membranes9070084
  • 33. Sardohan, T., Kir, E., Gulec, A., & Cengeloglu, Y. 2010. Removal of Cr(III) AND cr(vi) through the PLASMA modified and unmodified ion-exchange membranes. Separation and Purification Technology, 74(1), 14–20. doi:10.1016/j.seppur.2010.05.001
  • 34. Serdiuk, V.O., Sklavbinskyi, V.I., Bolshanina, S.B., Ivchenko, V.D., Qasim, M.N., & Zaytseva, K.O. (2018). Membrane Processes during the Regeneration of Galvanic Solution. Journal of Engineering Sciences, 5(2), F1–F6.
  • 35. Scott, K. 1995. Handbook of industrial membranes. Oxford: Elsevier Advanced Technology.
  • 36. Strathmann, H. 1985. Electrodialysis and its application in the chemical Process Industry. Separation and Purification Methods, 14(1), 41–66.
  • 37. Tongwen, X. 2002. Electrodialysis processes with bipolar membranes (EDBM) in environmental protection – A review. Resources, Conservation and Recycling, 37(1), 1–22.
  • 38. Verma, S.K., Khandegar, V., & Saroha, A.K. 2013. Removal of Chromium from Electroplating Industry Effluent Using Electrocoagulation. Journal of Hazardous, Toxic, and Radioactive Waste, 17(2), 146–152.
  • 39. Wang, Z., Liu, G., Fan, Z., Yang, X., Wang, J., & Wang, S. 2007. Experimental study on treatment of electroplating wastewater by nanofiltration. Journal of Membrane Science, 305(1–2), 185–195.
  • 40. Xing, Y., Chen, X., & Wang, D. 2007. Electrically Regenerated Ion Exchange for Removal and Recovery of Cr(VI) from Wastewater. Environmental Science & Technology, 41(4), 1439–1443.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c73e4b8-cb6e-4477-b000-8e161b68cf6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.