PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic cycles variability of TJI gas engine with different mixture preparation systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gas engines are a viable source of propulsion due to the ecological indicators of gas fuels and the large amount of the needed natural resources. Combustion of lean homogeneous gas mixtures allows achieving higher thermal efficiency values, which is a key factor in current engine development trends. Using the spark-jet ignition system (also called as Turbulent Jet Ignition or two-stage combustion) significantly improves the efficiency and stability of the combustion process, especially in the part-load operation on lean or very lean mixtures. This paper presents the impact of using two different fuel injection methods: Port Fuel Injection or mixer on the operation stability of a gas engine designed for LDVs. Comparative studies of two different mixture preparation systems were carried out on a single-cylinder AVL 5804 test engine. By recording the cylinder pressure for a significant number of engine cycles, it became possible to determine the repeatability of engine operation and to correlate the results with the mixture formation system and the air-fuel ratio. In the performed research the beneficial effect of the mixer system application on the engine operation stability in the part-load conditions was found.
Czasopismo
Rocznik
Strony
46--52
Opis fizyczny
Bibliogr. 22 poz., il kolor., 1 fot., wykr.
Twórcy
  • Faculty of Civil and Transport Engineering, Poznan University of Technology
  • Faculty of Civil and Transport Engineering, Poznan University of Technology
Bibliografia
  • [1] BUESCHKE, W., SKOWRON, M., WISŁOCKI, K., SZWAJCA, F. Comparative study on combustion characteristics of lean premixed CH4/air mixtures in RCM using spark ignition and turbulent jet ignition in terms of orifices angular position change. Combustion Engines. 2019, 176(1), 36-41. https://doi.org/10.19206/CE-2019-105
  • [2] CADAVID, Y., AMELL, A. The effect of natural gas composition and atmospheric humidity on premixed combustion across the regions of Colombia. Thermal Science and Engineering Progress. 2019, 10, 198-207. https://doi.org/10.1016/j.tsep.2019.01.015
  • [3] CHEOLWOONG, P., SUNGWON, L., GIHUN, L. et al. Effect of mixer type on cylinder-to-cylinder variation and performance in hydrogen-natural gas blend fuel engine. International Journal of Hydrogen Energy. 2013, 38, 4809-4815. https://doi.org/10.1016/j.ijhydene.2013.01.079
  • [4] CHIODI, M., FERRARI, A., MACK, O. et al. A way towards remarkable reduction of CO2-emissions in motor-sports: the CNG-engine. SAE Technical Paper 2011-37-0006. 2011. https://doi.org/10.4271/2011-37-0006
  • [5] FARAMAWY, S., ZAKI, T., SAKR A.A.-E. Natural gas origin, composition, and processing: a review. Journal of Natural Gas Science and Engineering. 2016, 34, 34-54. https://doi.org/10.1016/j.jngse.2016.06.030
  • [6] GALLONI, E. Analyses about parameters that affect cyclic variation in a spark ignition engine. Applied Thermal Engineering. 2009, 29(5-6), 1131-1137. https://doi.org/10.1016/j.applthermaleng.2008.06.001
  • [7] HUNICZ, J. Cycle-by-cycle variations in autonomous and spark assisted homogeneous charge compression ignition combustion of stoichiometric air-fuel mixture. International Journal of Spray and Combustion Dynamics. 2018, 10(3), 231-243. https://doi.org/10.1177/1756827718763564
  • [8] JI, S., LAN, X., CHENG, Y. et al. Cyclic variation of large-bore multi point injection engine fuelled by natural gas with different types of injection systems. Applied Thermal Engineering. 2016, 102, 1241-1249. https://doi.org/10.1016/j.applthermaleng.2016.03.082
  • [9] KRAMER, U., FERRERA, M., KUNNE, H. et al. Natural gas/methane fuels: European automotive fuel quality and standardization requirements. Gas Powered Vehicles Conference. Stuttgart 2015.
  • [10] LYONS, W.C, PLISGA, G.J., LORENZ, M.D. Standard handbook of petroleum and natural gas engineering. Chapter 7: Petroleum economic evaluation. Gulf Professional Publishing 2016. https://doi.org/10.1016/B978-0-12-383846-9.00007-2
  • [11] MOON, S. Potential of direct-injection for the improvement of homogeneous-charge combustion in spark-ignition natural gas engines. Applied Thermal Engineering. 2018, 136, 41-48. https://doi.org/10.1016/j.applthermaleng.2018.01.068
  • [12] PATEL, R., BRAHMBHATT, P. Performance characteristics comparison of CNG port and CNG direct injection in spark ignition engine. European Journal of Sustainable Development Research. 2018, 2(2), 26. https://doi.org/10.20897/ejosdr/82058
  • [13] PIELECHA, I., BUESCHKE, W., CIEŚLIK, W. et al. Turbulent spark-jet ignition in SI gas fuelled engine. MATEC Web of Conferences. 2017, 118, 00010-1-00010-10. https://doi.org/10.1051/matecconf/201711800010
  • [14] PIELECHA, I., BUESCHKE, W., SKOWRON, M. et al. Prechamber optimal selection for a two stage turbulent jet ignition type combustion system in CNG-fuelled engine. Combustion Engines. 2019, 176(1), 16-26. https://doi.org/10.19206/CE-2019-103
  • [15] REYES, M., TINAUT, F., GIMENEZ B. et al. Characterization of cycle-to-cycle variations in a natural gas spark ignition engine. Fuel. 2015, 140, 752-761. https://doi.org/10.1016/j.fuel.2014.09.121
  • [16] SCHUMACHER, M., WENSING, M. A gasoline fuelled pre-chamber ignition system for homogeneous lean combustion processes. SAE Technical Paper 2016-01-2176. 2016. https://doi.org/10.4271/2016-01-2176
  • [17] SHI, J., WANG, T., ZHAO, Z. et al. Cycle-to-cycle variation of a diesel engine fueled with Fischer-Tropsch fuel synthesized from coal. Applied Sciences. 2019, 9, 2032. https://doi.org/10.3390/app9102032
  • [18] SINGOTIA, P.K., SARASWATI, S. Cycle-by-cycle variations in a spark ignition engine fueled with gasoline and natural gas. IOP Conference Series: Materials Science and Engineering. 2019, 691, 012061. https://doi.org/10.1088/1757-899X/691/1/012061
  • [19] SONG, J., CHOI M., PARK, S. Comparisons of the volumetric efficiency and combustion characteristics between CNG-DI and CNG-PFI engines. Applied Thermal Engineering. 2017, 121, 595-603. https://doi.org/10.1016/j.applthermaleng.2017.04.110
  • [20] STONE, R. Introduction to internal combustion engines. Macmillan International Higher Education. 2012. 135.
  • [21] SYROVATKA, Z., VITEK, O., VAVRA, J. et al. Scavenged pre-chamber volume effect on gas engine performance and emissions. SAE Technical Paper 2019-01-0258. 2019. https://doi.org/10.4271/2019-01-0258
  • [22] TOULSON, E., SCHOCK, H., ATTARD, W. A review of pre-chamber initiated jet ignition combustion systems. SAE Technical Paper 2010-01-2263. 2010. https://doi.org/10.4271/2010-01-2263
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c6f2ab8-9f53-4018-8c95-82dccb1e2510
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.