PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Novel strategies for aminoglycoside antibiotic delivery in skeletal tissues - a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reviews recent advances concerning antibiotic-loaded microparticles application in osteomyelitis treatment. We discuss different methods utilized for microparticles' preparation, i.e. double emulsification, simple emulsification and spray drying. Materials comprised of sphere-shaped matrices are also presented. We point out that the most commonly used microsphere-building components are biodegrad¬able aliphatic polyesters such as poly(lactide-co-glicolide) PLGA, poly(sebacic-ricinoleic-ester-anhydride) P(SA-RA) and poly(lactic-co-hydroxymethyl glycolic acid) PLHMGA. Biopolymers like gelatin, starch or chitosan are also applied as antibiotic carriers. Relationship between preparation method, type of material and its crosslinking degree, microparticles' immobilization steps and the amount of loaded antibiotic are reported as the main factors controlling release rate of drugs in osteomyelitis treatment. And finally, several approaches to produce injectable formulations as well as implantable three dimensional scaffolds with the use of microparticles are described. All in all, this proves that antibiotic-loaded microspheres are a versatile form of biomaterials in osteomyelitis therapy.
Rocznik
Strony
3--7
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Kaldau N. K., Brorson S., Jensen P. E., Schultz C., Arpi M.: Bilateral polymicrobial osteomyelitis with Candida tropicalis and Candida krusei: a case report and an updated literature review. J Infect Dis 16 (2012) 16-22.
  • [2] Haidar R., Boghossian R., Atiyeh B.: Duration of post-surgical antibiotics in chronic osteomyelitis: empiric or evidence-based. J Infect Dis 14 (2010) 752-758.
  • [3] Dion A., Langman M., Hall G., Filiaggi M., Vancomycin release behaviour from amorphous calcium polyphosphate matrices intended for osteomyelitis treatment. Biomaterials 26 (2005) 7276-7285.
  • [4] Pääkkönen M., Peltola H.: Antibiotic treatment for acute haematogenous osteomyelitis of childhood: Moving towards shorter courses and oral administration. Int J Antimicrob Agents 38 (2011) 273-280.
  • [5] Lucke M., Schmidmaier G., Sadoni S., Wildemann B., Schiller R., Haas N.P., Raschke M.: Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone 32 (2003) 521-531.
  • [6] Barth R. E., Vogely C. H., Hoepelman A. I. M., Peters E. J. G.: 'To bead or not to bead?' Treatment of osteomyelitis and prosthetic joint-associated infections with gentamicin bead chains. Int J Antimicrob Agents 38 (2011) 371-375.
  • [7] Lee D. W., Yun Y. P., Park K., Kim S. E.: Gentamicin and bone morphogenic protein-2 (BMP-2)-delivering heparinized-titanium implant with enhanced antibacterial activity and osteointegration. Bone 50 (2012) 974-982.
  • [8] Campoccia D., Montanaro L., Arciola C. R.: The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27 (2006) 2331-2339.
  • [9] Costerton J. W., Stewart P. S., Greenberg E. P.: Bacterial biofilms: a common cause of persistent infections. Science 284 (1999) 1318-1322.
  • [10] Schierholz J. M., Beuth J.: Implant infections: a haven for opportunistic bacteria. J Hosp Infect, 49 (2) (2001) 87-93.
  • [11] Costerton J. W.: Biofilm theory guide the treatment of device-related orthopaedic infections. Clin. Orthop. Relat. Res. 437 (2005) 7-11.
  • [12] Walenkamp G. H., Kleijn L. L., de Leeuw M.: Ostoemyelitis treated with gentamicin - PMMA beads: 100 patient followed for 1-12 years. Acta Orthop. Scand. 69 (1998) 518-512.
  • [13] Sasaki T., Ishibashi Y., Katano H., Nagumo A., Toh S.: In vitro evaluation of vancomycin from calcium phosphate cement. J Arthroplast 20 (2005) 1055-1059.
  • [14] Mourino V., Boccaccini A. R.: Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 7(43) (2010) 209-227.
  • [15] Gautier H., Merle C., Auget J. L., Daculsi G.: Isostatic compression, a new process for incorporating vancomycin into biphasic calcium phosphate: comparison with a classical method. Biomaterials 21 (2000) 243-249.
  • [16] Friess W., Schlapp M.: Release mechanisms from genatmicin loaded Poly(lactic-co-glicolic acid) (PLGA) microparticles. J Pharm Sci 91(3) (2002) 845-855.
  • [17] Changez M., Koul V., Dinda A. K.: Efficacy of antibiotics-loaded interpenetrating network (IPNs) hydrogel based on poly(acrylic acid) and gelatin for treatment of experimental osteomyelitis: in vivo study. Biomaterials 26 (2005) 2095-2104.
  • [18] Gbureck U., Vorndran E., Barralet J. E.: Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions. Acta Biomater 4 (2008) 1480-1486.
  • [19] Ginebra M. P., Traykova T., Planell J. A.: Calcium phosphate cements as bone drug delivery systems: A review. J Control Release 113 (2006) 102-110.
  • [20] Calhoun J., Manring M. M., Shirtliff M.: Osteomyelitis of the Long Bones, J. Bone Jt. Surg., Am. 86(10) (2004) 2305-2318.
  • [21] Puga A. M, Rey-Rico A., Magarińos B. Alvarez-Lorenzo C., Concheiro A.: Hot melt poly-ε-caprolactone/poloxamine implantable matrices for sustained delivery of ciprofloxacin. Acta Biomater 8 (2012) 1507-1518.
  • [22] Balmayor E. R., Baran E. T., Azevedo H. S., Reis R. L.: Injectable biodegradable starch/chitosan delivery system for the sustained release of gentamicin to treat bone infections, Carbohydr. Polym. 87 (2012) 32-39.
  • [23] Li, B., Brown, K. V., Wenke, J. C., & Guelcher, S. A.: Sustained release of vancomycin from polyurethane scaffolds inhibits infection of bone wounds in a rat femoral segmental defect model, J Control Release doi:10.1016/j.jconrel.2010.1004.1002.
  • [24] Shirtliff M. E., Bergquist S. C., Calhoun J.: Antymicrobial treatment of chronic osteomyelitis. Clin Orthop Relat Res. 360 (1999) 47-65.
  • [25] Graaf S., van der Schroen C. G., Boom R. M.: Preparation of double emulsions by membrane emulsification - a review. J Membrane Sci 251 (2005) 7-15.
  • [26] Garti N., Bisperink C.: Double emulsions: progress and applications. Curr. Opin. Colloid Interface Sci. 3 (1998) 657.
  • [27] Chaisri W., Ghassemi A. H, Hennink W. E., Okonogi S.: Enhanced gentamicin loading and release of PLGA and PLHMGA microspheres by varying the formulation parameters. Colloids and Surfaces B: Biointerfaces 84 (2011) 508-514.
  • [28] Kempen D. H. R., Lu L., Hefferan T. E., Creemers L. B., Maran A., Classic K. L., Dhert W. J. A., Yaszemski M. J.: Retention of in vitro and in vivo BMP-2 bioactivities in sustained deliveryvehicles for bone tissue engineering. Biomaterials 29 (2008) 3245-3252.
  • [29] Schlapp M., Friess W.: Collagen/PLGA Microparticle Composites for Local Controlled Delivery of Gentamicin. J Pharm Sci 92(11) (2003) 2145-2151.
  • [30] Friess W., Schlapp M.: Sterilization of gentamicin containing collagen/PLGA microparticle composites. Eur J Pharm and Biopharm 63 (2006) 176-187.
  • [31] Virto M. R., Elorza B., Torrado S., de Los Angeles Elorza M., Frutos G.: Improvement of gentamicin poly(D,L-lactic-co-glycolic acid) microspheres for treatment of osteomyelitis induced by orthopedic procedures. Biomaterials 28 (2007) 877-885.
  • [32] Naraharisetti P. K, Lewa M. D. N., Fub Y. C., Leec D. J., Wang C. H.: Gentamicin-loaded discs and microspheres and their modifications: characterization and in vitro release. J Control Release 102 (2005) 345-359.
  • [33] Shi M., Kretlow J. D., Spicer P. P., Tabata Y., Demian N., Wong M. E., Kasper F. K., Mikos A. G.: Antibiotic-releasing porous polymethylmethacrylate/gelatin/antibiotic constructs for craniofacial tissue engineering. J Control Release 152 (2011) 196-205.
  • [34] Lee N., Baek S.: Effects of the diameter and shape of orthodontic mini-implants on microdamage to the cortical bone. Am J Orthod Dentofacial Orthop 138 (2010) 801-808.
  • [35] Krasko M. Y., Golenser J., Nyska A., Nyska M., Brin Y. S., Domb A. J.: Gentamicin extended release from an injectable polymeric implant. J Control Release 117 (2007) 90-96.
  • [36] Brin Y. S. Golenser J., Mizrahi B., Maoz G., Domb A. J., Peddada S., Tuvia S., Nyska A., Nyska M.: Treatment of osteomyelitis in rats by injection of degradable polymer releasing gentamicin. J Control Release 131 (2008) 121-127.
  • [37] Jiang T., Nukavarapu S. P., Deng M., Jabbarzadeh E., Kofron M. D., Doty S. B., Abdel-Fattah W. I., Laurencin C. T.: Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: In vitro degradation and in vivo bone regeneration studies. Acta Biomater 6 (2010) 3457-3470.
  • [38] Son S. J., Lee K. B., Kim S. G., Kwon T. Y., Kin K. H.: Porous Calcium Phosphate Granules Containing Drug - loaded polymeric nanoparticles for bone regeneration, doi.10.1016/ j.matlet.2012.02.114.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c6efa7c-9114-41d7-b8bd-8cc7342360f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.