PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation and optimization of evacuation routes in case of fire in underground mines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Risks of fire occurrence in underground mines are known for a long time. Evacuation and rescue plans allow to each underground mine to respond and establish control in case of emergency. The primary goal of this paper is to determine the optimal system for evacuation in case of fire in underground mines and through a process of computer simulation to be presented to all workers that are affected by this issue. In this study is developed a system that allows by using available software to work out the complete evacuation plans that include analysis of fire scenarios and optimal routes for evacuation. With development of database of fire scenarios, it is possible to plan routes for evacuation in all situations. This presented methodology can serve to make effective system for evacuation and rescue in case of fire and to help save lives and protect the financial investment in the mine. This methodology represents the most economical option of making an effective system for evacuation and also can serve as an idea of making a software package that includes all the steps of making a system for evacuation and rescue in case of fire in underground mines. This presented model will have increased accuracy compared to other models presented so far, because of the prepared 3D model of the underground mine which includes the actual dimensions of the mine along with its associated elements from which the fire dynamics and system for evacuation depends.
Rocznik
Strony
133--143
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Faculty of Natural and Technical Sciences, Mining Engineering, “Goce Delchev” University, P.O. Box 201, 2000 Shtip, Macedonia
  • Faculty of Natural and Technical Sciences, Mining Engineering, “Goce Delchev” University, P.O. Box 201, 2000 Shtip, Macedonia
autor
  • Faculty of Natural and Technical Sciences, Mining Engineering, “Goce Delchev” University, P.O. Box 201, 2000 Shtip, Macedonia
  • Faculty of Natural and Technical Sciences, Mining Engineering, “Goce Delchev” University, P.O. Box 201, 2000 Shtip, Macedonia
Bibliografia
  • 1. Adjiski, V. (2014). Possibilities for simulating the smoke rollback effect in underground mines using CFD software. GeoScience Engineering, 2014(2), 8-18. http://dx.doi.org/10.2478/gse-2014-0008.
  • 2. Conti, R., Chasko, L., & Wiehagen, W. (2005). Fire response preparedness for underground mines (pp. 68-72). Pittsburgh, PA: National Institute for Occupational Safety and Health-NIOSH.
  • 3. Derosa, M. (2004). Analysis of mine fires for all US metal/non-metal mining categories, 1990e2001 (pp. 51-59). Pittsburgh, PA: National Institute for Occupational Safety and Health-NIOSH.
  • 4. Guangwei, Y., & Dandan, F. (2012). Escape-route planning of underground coal mine based on Improved Ant Algorithm. Hindawi Publishing Corporation. Mathematical Problems in Engineering, 2013(2013), 32-46. http://dx.doi.org/10.1155/2013/687969. China.
  • 5. Hansen, R. (2010). Design fires in underground mines. PhD thesis (pp. 33-39). Sweden: Mälardalen University.
  • 6. Hansen, R., & Ingason, H. (2013). Heat release rate measurements of burning mining vehicles in an underground mine. Fire Safety Journal, 61, 12-25. http://dx.doi.org/10.1016/j.firesaf.2013.08.009.
  • 7. Ingason, H. (2006). Correlation between temperatures and oxygen measurements in a tunnel flow. Fire Safety Journal, 42, 75-80. http://dx.doi.org/10.1016/j.firesaf.2006.08.003.
  • 8. Ingason, H. (2008). Fire test with a front wheel loader rubber tire, SP Rapport 2010:64 (pp. 89-98). Borås, Sweden: Swedish National Testing and Research Institute.
  • 9. Ingason, H. (2009). Design fire curves for tunnels. Fire Safety Journal, 44, 259-265. http://dx.doi.org/10.1016/j.firesaf.2008.06.009.
  • 10. Jalali, S. E., & Noroozi, M. (2009). Determination of the optimal escape route of underground mine networks in emergency cases. Safety Science, 47, 1077-1082. http://dx.doi.org/10.1016/j.ssci.2009.01.001.
  • 11. Klote, J. (2002). Principles of smoke management (pp. 22-34). American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc.
  • 12. MineFire Pro+. (2013). Clovis, CA 93611, USA: Mine Ventilation Services, Inc.
  • 13. PyroSim User Manual. (2012). Manhattan, KS 66502-6081: Thunderhead Engineering Consultants, Inc. USA.
  • 14. Roh, J. S., Ryou, H. S., & Kim, D. H. (2007). Critical velocity and burning rate in pool fire during longitudinal ventilation. Tunnelling Underground Space Technology, 22(3), 262-271.
  • 15. Totten, G., Westbrook, S., & Shah, R. (2003). Fuels and lubricants handbook: technology, properties, performance, and testing. 1 (pp. 63-71). ASTM International. http://dx.doi.org/10.1016/j.tust.2006.08.003.
  • 16. Zalosh, R. (2003). Industrial fire protection engineering (pp. 77-81). Chichester: John Wiley & Sons Ltd. http://dx.doi.org/10.1002/9781118903117.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c6de058-6b3f-47bb-945e-f3bdbe00ecbd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.