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Abstract 

 
The lifetime distribution is important in reliability studies. There are many situations in lifetime testing, where an 

item (technical object) fails instantaneously and hence the observed lifetime is reported as a small real positive 
number. Motivated by reliability applications, we derive the branching Poisson process and its property. We prove 
that the branching Poisson process is adequate model for the failure process of the bus electrical system. The method 
is illustrated by two numerical examples. In the second example, we derive the times between the failures of a bus 
electrical system. 
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1. Introduction 
 

The standard practice in modeling statistical data is either to derive the appropriate model 
based on physical properties of the system or choose a flexible family of distributions and then 
find a member of the family that is appropriate to the data. In both situations it would be helpful if 
we find the model of lifetime that explains the distribution using important measures of indices. 
For example, in reliability theory and survival analysis, identification of probability models is 
often achieved through studying the characteristic measures such as failure rate function, mean 
residual life function, mean time to failure, burn-in time etc. 
Occurrence of instantaneous and early failures in lifetime testing is observed in sets of failures of 
machines. These occurrences may be due to faulty construction or inferior quality. Some failures 
result from natural damages of the machine while the other failures may by caused by inefficient 
repair of previous failures resulting from incorrect organization of the repair process. These 
situations can be modeled by modifying commonly used parametric model such exponential, 
gamma and Weibull distributions. In the papers [14,15,16] the set of the failures of machines is 
divided into two subsets, namely into the set of primary failures and secondary failures. This 
division suggests that the population of the lifetime is heterogeneous. The set of secondary failures 
is “similar” to the set of instantaneous and early failures. The population of time to failures can be 
described by using the statistical concept of mixture of distributions. The lifetime distribution as 
the mixture of  exponential and Rayleigh’s distributions is considered in [14]. The mixture of a 
distribution with distribution function F and one-point distribution is often analyzed in literature. 
The problem of statistical inference about the set of parameters when F is exponential is analyzed 
in [2, 11, 12, 13, 18, 19]. Statistical inference when F is a two parameter gamma distribution is 



investigated in [20] and when F is two parameter Weibull distribution is considered in [21]. In this 
paper, we consider the stationary branching Poisson process as a model of the failure process of 
bus electrical system. The idea of application of the branching Poisson process to the failure 
process was first introduced by Bartlett [4] and Lewis [17]. 
 
2.   Definitions and background 
 

Let T be a non-negative random variable denoting the life length of a component having the 
distribution function F(t) with F(0) = 0, the reliability (survival) function R(t) = 1− F(t), and the 
probability density function f(t). Then the failure rate function is given by λ(t) = f(t) / R(t). We  
also assume that f(t) is continuous and twice differentiable on (0,∞). In renewal theory and 
maintenance the equilibrium distribution corresponding to lifetime distribution play an important 
role. The distribution function of the equilibrium distribution corresponding to the lifetime T is 
defined as 
 

FE(t) =  
t

0

ET/du)u(R  

 
 The probability density function of the equilibrium distribution is (see [6]) 
 

f E(t) = R(t) / ET 
 
and the failure rate function of the equilibrium distribution is 
 

λ E(t) = R(t) / (ET RE(t)), where RE(t) = 1− FE(t) 
 
A key role in this paper will be playing by the mean residual life function. If ET < ∞, then the 
mean residual life function of T is defined by  
 

m(t) = E(X – t | X > t) = 


t

)t(R/du)u(R  if R(t) > 0 

 
and m(t) = 0 for t such that R(t) = 0. Then  
 

ET = m(0) = 


0

du)u(R  

 
It is well known that the mean residual function uniquely determines by the reliability function 
through the following inversion formula  
 

R(t) = 
t

0

)
)u(m

du
exp(

)t(m

)0(m
 

 
for all t ≥ 0 such that and R(t) > 0 (see [8, 10]). 
The mean residual life function m(t) can have various shapes of those labeled increasing, 
decreasing, bathtub and upside-down bathtub (unimodal) are given the most attention. Many 
authors [7, 9 ] convincingly argue that the shapes of m(t) and λ(t) provide useful information with 



regard to, for example, the quality of a product. The shape of the mean residual life function m(t) 
also provides a good idea about behavior of failure rate function and vice versa, but the 
relationship between the two is usually very complex. Thus λ(t), m(t) and R(t) are equivalent in the 
sense that, given one of them, the other two can be determined.    
The idea of total time on test (TTT – transformation) processes was first defined by Barlow  and 
Campo [3]. The TTT – transform has been found useful to study the ageing properties of the 
underling distribution. For the distribution function F(t), we define 
  

F-1(t) = inf{ x: F(x) ≥ t }, where p  < 0, 1). 
 
The function                       

H–1(t) = 
 )t(F

0

1

dx)x(R  

 
is called the TTT – transform and the function 
 

ФF (t) = H–1(t) / ET 
 
is the scaled TTT – transform. 
It is known that 

H–1(1) = ET. 
Note that if F(t) is the exponential distribution function then scaled TTT – transform is given by 
ФF (t) = t  for 0 ≤ t ≤ 1. 
Now let t(1) ≤ t(2) ≤, …,≤ t(n) to be an ordered sample from life distribution, and let  
 

Dj = (n − j + 1) ( t (j) − t (j-1) ), where t (0) = 0, 
                              

then              Sj = 


j

1k
kD   for j = 1,2,…, n. 

                             

denotes the TTT – transform at   t (j), where S0 = 0. The value S j / S n is an estimate of the scaled 
TTT – transform. The TTT – plot is obtained by plotting u j =   S j / S n

  against j / n for j = 0, 1, 2, 
…, n and joining the points by straight lines. Scaled TTT – transform for some families of the 
lifetime distributions are given by Barlow and Campo in [3]. 
 
3.  Model for failures process 
 

In this chapter of paper, we will construct the model of failures process of bus electrical 
system. This process is built up as follows. There is a series of primary failures, separated by the 
random variables Z1, Z2, … and each of these primary failures generates a subsidiary series of 
failures. In each subsidiary process there are a random number S of failures separated by random 
variables Y1, Y2, …, Ys although S may have the value zero in which case no subsidiary failure 
follows the primary failure. The subsidiary process is assumed to be independent of one another 
and have identical structure. The complete process is then the superposition of primary failures and 
subsidiary failures processes, the assumption is that two types of events are indistinguishable. This 
process is called the stationary branching Poisson process. When this process is used as model for 
bus failures, a primary event is associated with the initial failure of a component.  However, repair 
of the bus may not always be effected and then, because the bus uses all of its components all the 
time, a subsidiary failure occurs Y1 later when the failed component is again needed for the correct 



operation of the bus The failed component is finally located and removed after S + 1 attempts as 
repairs have been made. Fortunately, this Poisson assumption is reasonable in some applications 
and from here we assume that Zi,  i = 1, 2, … are independent and identically distributed with the 
probability density function. 
 

f Z( t ) = λ exp(−λ t), where λ > 0 and t  ≥ 0. 
 
Then the series of the random variables Zi generates the stationary Poisson process. By the random 
variable T, we denote the time between successive failures in stationary branching Poisson 
process. Then by [5,17] the reliability function of the random variable T is 
 

                                      RT( t ) = 

 t

0
Y

Y }du)u(REStexp{
ES1

)t(RES1
 (1) 

 
Then it is possible to derive almost all of the probabilistic properties of the failure process. Now, 
the failure process is the stationary branching Poisson process. We denote by T the time between 
successive failures in the stationary branching Poisson process. 
Let 

ETT(t) = 
t

0
T du)u(R  

By (1), we have  
 

ETT (t) = (1− exp(−φ(t)) / (λ (1+ ES)) 
 

where φ(t) = λ t + ES 
t

0

Y du)u(R  

 
We observe that 
 

ETT (0) = 0 
 

ETT ( ∞ ) = ET = 1/ ( λ (1+ ES)) 
 
By [5] and [17] the formula for the variance D2T is given by  
 

D2T = (1 + 2 ES exp(−λ (1+ ES)) EY) / (λ (1+ ES))2 
 
The coefficient of variation of random variable T is 
 

V(t) = 1 + 2 ES exp(−λ (1 + ES) EY) 
 
Lower and upper bound for the variance and the coefficient of variations can be written as 
 

1 / ( λ2 (1 + ES)2) ≤ D2T ≤ (1 + 2 ES ) / ( λ2 (1 + ES)2) 
 

1 ≤ V(t) ≤ 1+2 ES 
 



This shows that the coefficient of variations of intervals between the failures in stationary 
branching Poisson process is always greater than or equal to1. The mean residual life function of T 
can be written as  
 

m(t) = ( ET − ET(t)) / RY(t) 
and 

m(t) = 1 / φ’(t) 
 
From the above, it is clear that the random variable T has the following properties: 
 
Property 1. The mean residual life function m(t) of the life time T is increasing. 
 
Property 2. For the function φ(t), we conclude that φ’(t) > 0 and , φ’’(t) ≤ 0. 
 
Property 3. The failure rate function of the lifetime T is  
 

λT(t) = φ’(t) − φ’’(t) / φ’(t) 
 
Property 4. The distribution function of the equilibrium distribution is given by 
 

FE(t) =1− exp(−φ(t)) for t ≥ 0 
 
Property 5. The failure rate function of the equilibrium distribution is given by 
 

λE(t) = φ’(t) 
 
4.  Numerical examples  
 
Example 1. In this example, we assume that the random variable Y has Weibull distribution with 
the reliability function  
 

RY( t ) = exp(− a t b) for t ≥ 0, a > 0, b > 0. 
 
Also, we assume that ES = 1, a = 0.5, λ = 1 and b{1.5, 1.75, 2}. For its parameters sets, we 
obtain unimodal failure rate functions λT(t) of T. Figure 1 shows the realization of numerical 
calculation of λT(t).  
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Fig.1. Failure rate function for b{1.5, 1.75, 2} 
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Fig.2. Failure rate function for b{2, 2.5, 3} 
 
In the second part of this example, we assume that  a = 0.5, λ = 1 and b{2, 2.5, 3}. Realization of 
these computation shows Figure 2. All the failure rate functions are decreasing.  
 
Example 2. The object of the investigation is a real municipal bus transport system within a large 
agglomeration. The analyzed system operates 190 municipal buses of various types and makes.    
In this example, we consider a real time data on failure of the electrical system of a bus. The data 
set contains n = 2565 times between successive failures of the electrical system of a bus. We apply 
the maximum likelihood estimates of the parameters a, b and λ. As the initial solution of the 
likelihood equation, we give b = 1. We calculate the values of the parameters a = 0.8744, b = 
0.40729, λ = 0.05457, and ES = 1. For these values of parameters, we prove the  Kolmogorov’s 
test of goodness of fit and compute the associated p–value = 0.87. It shows a good conformity of 
the empirical data with the  distributions with reliability function (1). Figure.3 shows the reliability  
functions for this example. Figure 4 shows the graphs of the function φT(t) for estimated 
parameters, φE(t) for data set and φEXP(t) for the exponential distribution. Figure 5 shows the 



graphs of the empirical TTT–transformation of empirical distribution (TTTe), estimated 
distribution (TTTt) obtained by (1), and for the exponential distribution (EXP) (see[1]).  
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Fig. 3. Reliability functions empirical and theoretical 
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Fig.4. Graphs functions φe(t), φt(t) and φEXP (t) 
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Fig. 5. Plots TTT-transform empirical, theoretical and exponential 
 
5.  Conclusions 
 

In this paper, we study the lifetime model for instantaneous and early failures of bus electrical  
system. When the parameters are estimated, it is possible to apply for further calculations, such 
that as MTTF (Mean Time to Failure), burn–in time, the failure rate function and the replacement 
time. The development of efficient parameters estimation methods for this failure process model 
and  their application for times to failure modeling are topics for further study. An application to a 
real data set shows that this model may be applicable in practice.  
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