PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Results of Mathematical Modeling of Evaporation Process the Drops of Sulfuric Acid in the Gas Flow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The processes of concentration of dilute solutions of sulfuric acid (H2SO4), in particular hydrolytic sulfuric acid for the production of pigment titanium (IV) oxide, were analyzed. It is proposed to concentrate solutions of Н2SO4 by evaporation in direct contact of acid droplets with hot industrial exhaust gases. The mathematical model of the evaporation of Н2SO4 drops in a hot gas stream, which used for the calculations, makes it possible to calculate the mass, temperature, velocity, and coordinates of the drop at any time with sufficient accuracy. However, the calculations are difficult, cumbersome and require multiple processing of large data sets. Therefore, the aim of the article was to approximate the calculated technological parameters of sulfuric acid droplet evaporation by obtaining simple mathematical dependencies. The mathematical dependences of the mass transfer coefficient and the distance traveled by a drop of Н2SO4 during evaporation on air temperature and drop diameter were obtained. It has been established that technologically expedient evaporation of Н2SO4 drops with a diameter of ≤ 0,5·10-3 m in traditional devices leads to significant droplet loss, increased corrosion of equipment, etc. So, in order to practically implement the technology of evaporation of HSA solutions with industrial exhaust gases, it is necessary to change the technological mode of operation of the evaporator and the design of the main device. It is proposed to use the obtained results to study the methods of intensification of the evaporation process, selecting a modern mass transfer apparatus, developing a technology for utilizing hydrolytic sulfuric acid and producing pigment titanium (IV) oxide.
Twórcy
  • Department of Mathematics, Lublin University of Technology, ul. Nadbystrzycka 38A, 20-618 Lublin, Poland
  • Department of Chemistry and Technology of Inorganic Substances, Lviv Polytechnic National University, Bandera Street 12, 79013 Lviv, Ukraine
  • Department of Chemistry and Technology of Inorganic Substances, Lviv Polytechnic National University, Bandera Street 12, 79013 Lviv, Ukraine
  • Fundamentals of Technology Faculty, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Science for a changing world. Titanium statistics and information. U.S. geological survey. USGS.gov, 2022. https://www.usgs.gov/ centers/national-minerals-information-center/ titanium-statistics-and-information
  • 2. Sadeghi M.H., Nasr Esfahany M. Development of a safe and environmentally friendly sulfate proces for the production of titanium oxide. Industrial & Engineering Chemistry Research, 61(4), 2022: 1786–1796, https://doi.org/10.1021/acs. iecr.1c03364.
  • 3. Nguyen T.H., Lee M.S. A review on the recovery of titanium dioxide from ilmenite ores by direct leach-ing technologies. Mineral Processing and Extractive Metallurgy Review, 40(4), 2019: 231–247. https:// doi.org/10.1080/08827508.2018.1502668
  • 4. Yavorskyi V.T., Technology of sulphur and sulphuric acid. Lviv Polytechnic National University Press, 2010, pp. 404.
  • 5. Várnai K., Petri L., Nagy L., Prospective evaluation of spent sulfuric acid recovery by process simulation. Periodica Polytechnica Chemical Engineering, 65(2), 2021: 243–250. https://doi.org/10.3311/ ppch.15679.
  • 6. Kalymon Y., Helesh A., Yavorskyi O. Hydrolytic sulphate acid evaporation by waste gases from burning furnaces of meta-titanic acid paste. Chemistry & Chemical Technology, 6(4). 2012: 423–429. https://doi.org/10.23939/chcht06.04.423.
  • 7. Kalymon Y,, Gelesh A,, Yavorsky I. Investigation of the content of Fe ions in hydrolysis sulfuric acidin the process of its evaporation. Bulletin of Lviv Polytechnic National University. Chemistry, Technology of Substances and their Application, 761, 2013: 16–20.
  • 8. Yavorsky V., Kalymon Y., Znak Z., Gelesh A., Triguba O., The method of concentration of used solutions of sulfuric acid. Patent of Ukraine 32571. 26 May 2008.
  • 9. Fuchs N.A. Evaporation and growth of droplets in gaseous environment. Moscow: Academy of Scinces of the USSR, 1958.
  • 10. Gentry J.W., Brock J.R., A study of the lifetime of aerosol particles. Journal of Colloid and Interace Science; 27(4), 1968: 691-701. https://doi. org/10.1016/0021-9797(68)90103-3.
  • 11. Tsagkogeorgas G., Roldin P., Duplissy J., Rondo L., Tröstl J., Slowik J.G., Ehrhart S, Franchin A., Kürten A., Amorim A., Bianchi F., Kirkby J., Petäjä T., Baltensperger U., Boy M., Curtius J., Flagan R.C., Kulmala M., Donahue N.M., Stratmann F. Evaporation of sulfate aerosols at low relative humidity. Atmospheric Chemistry and Physics, 17(14), 2017: 8923–8938. https://doi.org/10.5194/acp-17-8923-2017.
  • 12. Zhao P., Li G., Yu Y., Numerical simulation and experimental study of heat and mass transfer in fuel droplet evaporation. Heat and Mass Transfer, 50(8), 2014: 1145-54. https://doi.org/10.1007/ s00231-014-1317-1.
  • 13. Homes S., Heinen M., Vrabec J., Fischer J., Evaporation driven by conductive heat transport. Molecular Physics, 119, 2021:15–16. https://doi.org/10.10 80/00268976.2020.1836410
  • 14. Dykyi M.O., Solomakha A.S., Petrenko V.G. Mathematical modelling of evaporation of water droplets in the air flow. East-European Journal of Advanced Technologies, 3, 10(63), 2013: 17–20.
  • 15. Selivanov S.E., Kulik M.I., Kinetics of evaporation of liquid fuel droplets. Bulletin of KHNADU, 52, 2011: 105–109.
  • 16. Volkov R.С., Kuznetsov G.V., Strizhak P.A., Influence of solid inclusions in liquid droplets on tcharacteristics of their evaporation when moving through a high-temperature gas environment. Journal of Technical Physics, 84(12), 2014: 33–37.
  • 17. Yavors’kyi V.T., Helesh A.B., Determination of the parameters of evaporation of the solutions of sulfuric acid with low corrosion activity of the phases. Materials Science, 51(5), 2016: 691–700, https:// doi.org/10.1007/s11003-016-9892-6.
  • 18. Saeid A., Chojnacka K., Sulfuric Acid, Encyclopedia of Toxicology (Third Edition), Academic Press, 2014: 424-426, https://doi.org/10.1016/ B978-0-12-386454-3.00990-8.
  • 19. Sarzamin Khan, Jawad Ali, Chemical analysis of air and water. Bioassays, 2018: 21–39, https://doi. org/10.1016/B978-0-12-811861-0.00002-4.
  • 20. Hongyin Pang, Ruifang Lu, Tao Zhang, Li Lü, Yanxiao Chen, Shengwei Tang, Chemical dehydration coupling multi-effect evaporation to treat waste sulfuric acid in titanium dioxide production process, Chinese Journal of Chemical Engineering, 28(4), 2020: 1162-1170. https://doi.org/10.1016/j. cjche.2020.02.009.
  • 21. Jaeheum Jung, Kiwook Song, Seongho Park, Jonggeol Na, Chonghun Han, Optimal operation strategy of batch vacuum distillation for sulfuric acid recycling process. Computers & Chemical Engineering, 71, 2014: 104–115, https://doi.org/10.1016/j. compchemeng.2014.07.024.
  • 22. Glueckauf E. The Composition of Atmospheric Air. In: Malone, T.F. (Ed.) Compendium of Meteorology. American Meteorological Society, Boston, MA, 1951. https://doi.org/10.1007/978-1-940033-70-9_1.
  • 23. Hickman K., Kayser W., Temperature determinations of the vapor-liquid interface surface temperature determinations. Journal of Colloid and Interface Science, 52(3), 1975: 578–581, https://doi.org/10.1016/0021-9797(75)90283-0
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c689fad-fddd-4517-a6e7-d6f70696747d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.