PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Behaviour of soil-steel composite structures during construction and service: a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zachowanie się podatnych konstrukcji gruntowo-powłokowych podczas budowy i eksploatacji: przegląd
Języki publikacji
EN
Abstrakty
EN
In this paper, existing knowledge on the behaviour of soil-steel composite structures (SSCSs) has been reviewed. In particular, the response of buried corrugated steel plates (CSPs) to static, semistatic, and dynamic loads has been covered. Furthermore, the performance of SSCS under extreme loading, i.e., loading until failure, has been studied. To investigate the behaviour of the type of composite structures considered, numerous full-scale tests and numerical simulations have been conducted for both arched and box shapes of the shell. In addition, researchers have examined different span lengths and cover depths. Furthermore, to enhance the load-bearing capacity of the composite structures, various stiffening elements have been applied and tested. The review shows that the mechanical features of SSCSs are mainly based on the interaction of the shell with the soil backfill. The structures, as a composite system, become appropriately stiff when completely backfilled. For this reason, the construction phase corresponds to the highest values of shell displacement and stress. Moreover, the method of laying and compacting the backfill, as well as the thickness of the cover, has a significant impact on the behaviour of the structure at the stage of operation in both the quantitative and qualitative sense. Finally, a limited number of studies are conducted on the ultimate bearing capacity of large-span SSCS and various reinforcing methods. Considerably more works will need to be done on this topic. It applies to both full scale tests and numerical analysis.
PL
W artykule podsumowano dotychczasową wiedzę na temat zachowania się mostowych konstrukcji gruntowo-powłokowych. W szczególności przeprowadzony przegląd dotyczy mechanicznej odpowiedzi obiektów z blach falistych na obciążenia statyczne, quasi-statyczne i dynamiczne. Ponadto, studium literaturowe obejmuje badania konstrukcji gruntowo-powłokowych przy ich ekstremalnym obciążeniu, tj. do poziomu obciążenia niszczącego. W tym zakresie zachowanie rozpatrywanego typu konstrukcji badano w licznych testach obciążeniowych w pełnej skali jak również na drodze symulacji numerycznych zarówno dla kształtów łukowych, jak i skrzynkowych powłoki. Analizom takim poddano obiekty o różnych rozpiętościach I przy różnych grubościach zasypki. Ponadto, w celu zwiększenia nośności obiektów inżynierskich z blach falistych zastosowano i przetestowano różnego rodzaju elementy usztywniające. Z przeprowadzonego przeglądu wynika, że najważniejsze cechy mechanicznego zachowania się konstrukcji gruntowo-powłokowych opierają się głównie na wzajemnej współpracy powłoki z gruntową zasypką inżynierską. Obiekty takie, jako swego rodzaju układy zintegrowane, nabierają odpowiedniej sztywności dopiero po całkowitym zasypaniu powłoki. Z tego powodu największe deformacje oraz wytężenie powłoki występują w fazie budowy. Sposób układania i zagęszczania zasypki oraz jej minimalna wysokość ponad powłoką mają ponadto istotny wpływ na zachowanie się konstrukcji pod obciążeniem użytkowym na etapie eksploatacji, zarówno w sensie ilościowym, jak i jakościowym. Podsumowując przegląd, wskazano na fakt, że liczba badań, w których określano nośność graniczną, jest ograniczona w przypadku obiektów o dużej rozpiętości i przy zastosowaniu różnych sposobów wzmocnienia konstrukcji. W tym zakresie temat badań obiektów inżynierskich z blach falistych powinien zostać rozszerzony. W opinii autorów w najbliższych latach pojawią się nowe prace w tym zakresie. Dotyczy to zwłaszcza pełnoskalowych testów obciążeniowych ale także analiz numerycznych.
Rocznik
Strony
263--292
Opis fizyczny
Bibliogr. 104 poz., il., tab.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Civil Engineering, Wroclaw, Poland
  • Wrocław University of Science and Technology, Faculty of Civil Engineering, Wroclaw, Poland
  • Wrocław University of Science and Technology, Faculty of Civil Engineering, Wroclaw, Poland
  • Wrocław University of Science and Technology, Faculty of Civil Engineering, Wroclaw, Poland
Bibliografia
  • [1] G. Antoniszyn, C. Machelski, and B. Michalski, “Live load effects on a soil-steel bridge founded on elastic supports”, Studia Geotechnica et Mechanica, vol. 28, no. 2-4, pp. 65-82, 2006.
  • [2] G.R. Schneider and L. Pettersson, “Soil steel composite bridges an international survey of full scale tests and comparison with the Pettersson-Sundquist design method”, M.Sc. thesis, Royal Institute of Technology (KTH), Sweden, 2013.
  • [3] ViaCon Poland, “Catalogues English”. [Online]. Available: https://viacon.pl/en/download. [Accessed: 13. October. 2022].
  • [4] D. Beben, Soil-steel bridges: design, maintenance and durability. Springer Nature, 2020.
  • [5] S. Alzabeebee, D. N. Chapman, and A. Faramarzi, “Innovative approach to determine the minimum wall thickness of flexible buried pipes”, Geomechanics & Engineering, vol. 15, no. 2, pp. 755-767, 2018, doi: 10.12989/gae.2018.15.2.755.
  • [6] M.G. Katona, “Influence of soil models on structural performance of buried culverts”, International Journal of Geomechanics, vol. 17, no. 1, 2017, doi: 10.1061/(ASCE)GM.1943-5622.0000684.
  • [7] P. Kolisoja and A. Kalliainen, “Modelling of plastic culvert and road embankment interaction in 3D”, Procedia Engineering, vol. 143, pp. 427-434, 2016, doi: 10.1016/j.proeng.2016.06.054.
  • [8] S.L. Gassman, A.J. Schroeder, and R.P. Ray, “Field performance of high density polyethylene culvert pipe”, Journal of Transportation Engineering, vol. 131, no. 2, pp. 160-167, 2005, doi: 10.1061/(ASCE)0733-947X(2005)131:2(160).
  • [9] K. Ono, K. Terada, Y. Sawada, H.I. Ling, and T. Kawabata, “Fluid coupled-DEM simulation of lateral loading experiment for buried pipe in saturated sand”, Transportation Infrastructure Geotechnology, vol. 5, pp. 93-113, 2018, doi: 10.1007/s40515-018-0050-5.
  • [10] T. Maleska, J. Nowacka, and D. Beben, “Application of EPS geofoam to a soil-steel bridge to reduce seismic excitations”, Geosciences, vol. 9, no. 10, pp. 1-17, 2019, doi: 10.3390/geosciences9100448.
  • [11] P. Mellat, A. Andersson, L. Pettersson, and R. Karoumi, “Dynamic behaviour of a short span soil-steel composite bridge for high-speed railways – Field measurements and FE-analysis”, Engineering Structures, vol. 69, pp. 49-61, 2014, doi: 10.1016/J.ENGSTRUCT.2014.03.004.
  • [12] A. Sanaeiha, M. Rahimian, and M.S. Marefat, “Field test of a large-span soil-steel bridge stiffened by concrete rings during backfilling”, Journal of Bridge Engineering, vol. 22, no. 10, art. no. 06017002, 2017, doi: 10.1061/(asce)be.1943-5592.0001102.
  • [13] L. Pettersson, “Full scale tests and structural evaluation of soil steel flexible culverts with low height of cover”, Ph.D. thesis. Royal Institute of Technology (KTH), Sweden, 2007.
  • [14] A. Wysokowski, “Impact of live load on changes of backfill properties of buried flexible steel railway structure”, Transportation Infrastructure Geotechnology, vol. 9, no. 6, pp. 874-889, 2022, doi: 10.1007/s40515-021-00204-4.
  • [15] L. Pettersson and H.Sundquist, Design of soil steel composite bridges. TRITA-BKN, Report 112, 5th ed. KTH Royal Institute of Technology, 2014.
  • [16] E.B. Flener, R. Karoumi, and H. Sundquist, “Field testing of a long-span arch steel culvert during backfilling and in service”, Structure and Infrastructure Engineering, vol. 1, no. 3, pp. 181-188, 2005, doi: 10.1080/00222930500030929.
  • [17] H.L. White and J.P. Layer, “The corrugated metal conduit as a compression ring”, Highway Research Board Proceedings, vol. 39, pp. 389-397, 1960.
  • [18] T. Maleska and D. Beben, “Numerical analysis of a soil-steel bridge during backfilling using various shell models”, Engineering Structures, vol. 196, art. no. 109358, 2019, doi: 10.1016/j.engstruct.2019.109358.
  • [19] B. Bakht and A. Mufti, Bridges analysis, design, structural health monitoring, and rehabilitation. Winnipeg, Canada: Springer, 2015.
  • [20] T. Maleska, D. Beben, and J. Nowacka, “Seismic vulnerability of a soil-steel composite tunnel – Norway Tolpinrud Railway Tunnel case study”, Tunnelling and Underground Space Technology, 2021, vol. 110, art. no. 103808, 2021, doi: 10.1016/j.tust.2020.103808.
  • [21] E.B. Flener, “Response of long-span box type soil-steel composite structures during ultimate loading tests”, Journal of Bridge Engineering, vol. 14, no. 6, pp. 496-506, 2009, doi: 10.1061/(asce)be.1943-5592.0000031.
  • [22] M. Sobótka and D. Łydzba, “Live load effect in soil-steel flexible culvert: role of apparent cohesion of backfill”, Journal of Environmental and Civil Engineering, vol. 26, no. 2, pp. 620-634, 2022, doi: 10.1080/19648189.2019.1670264.
  • [23] M. Esmaeili, J.A. Zakeri, and P.H. Abdulrazagh, “Minimum depth of soil cover above long-span soil-steel railway bridges”, International Journal of Advanced Structural Engineering, vol. 5, pp. 1-17, 2013, doi: 10.1186/2008-6695-5-7.
  • [24] P. Pettersson, E.B. Flener, and H. Sundquist, “Design of soil-steel composite bridges”, Structural Engineering International, vol. 25, no. 2, pp. 159-172, 2015, doi: 10.2749/101686614x14043795570499.
  • [25] E. Ołdakowska, “Flexible engineering structures from the corrugated metal sheets – comparison of costs of solutions used in the road building”, IOP Conference Series: Materials Science and Engineering, vol. 269, no. 1, art. no. 012025, 2017, doi: 10.1088/1757-899X/269/1/012025.
  • [26] T. Maleska and D. Beben, “The impact of backfill quality on soil-steel composite bridge response under seismic excitation”, IOP Conference Series: Materials Science and Engineering, vol. 419, no. 1, art. no. 012040, 2018, doi: 10.1088/1757-899X/419/1/012040.
  • [27] C. Machelski, J.B. Michalski, and L. Janusz, “Deformation factors of buried corrugated structures”, Transportation Research Record, vol. 2116, no. 1, pp. 70-75, 2009, doi: 10.3141/2116-10.
  • [28] N. Nguyen-Minh, N. Tran-Van, T. Bui-Xuan, and T. Nguyen-Thoi, “Static analysis of corrugated panels using homogenization models and a cell-based smoothed mindlin plate element (CS-MIN3)”, Frontiers of Structural and Civil Engineering, vol. 13, pp. 251-272, 2019, doi: 10.1007/s11709-017-0456-0.
  • [29] F. De’nan, H. Hasan, M.H. Osman, and S. Saad, “Torsional behavior of triangular web profile (TRIWP) steel section by experimental study”, Frontiers of Structural and Civil Engineering, vol. 10, pp. 409-419, 2016, doi: 10.1007/s11709-016-0358-6.
  • [30] A. Wysokowski, “Durability of flexible steel corrugated shell structures-theory and practice”, Archive of the Institute of Civil Engineering, vol. 23, pp. 347-360, 2017, doi: 10.21008/j.1897-4007.2017.23.32.
  • [31] C. Machelski, Modelowanie mostowych konstrukcji gruntowo-powłokowych (Modeling of bridge groundshell structures). Wroclaw, Poland: Lower Silesian Educational Publishing House, 2008.
  • [32] C. Machelski, P. Tomala, B. Kunecki, L. Korusiewicz, K. Williams, and M.M. El-Sharnouby, “Ultracor – 1-st realization in Europe, design, erection, testing”, Archive of the Institute of Civil Engineering, vol. 23, pp. 188-197, 2017, doi: 10.21008/j.1897-4007.2017.23.18.
  • [33] M. El-Sharnouby, L. Janusz, J. Newhook, “Performance of the largest steel buried bridge”, presented at Structures Session 2019 TAC-ITS, pp. 1-13.
  • [34] Z. Manko and D. Beben, “Tests during three stages of construction of a road bridge with a flexible load-carrying structure made of super cor type steel corrugated plates interacting with soil”, Journal of Bridge Engineering, vol. 10, no. 5, pp. 604-621, 2005, doi: 10.1061/(asce)1084-0702(2005)10:5(604).
  • [35] P. Tomala and C. Machelski, “Budowa obiektu gruntowo-powłokowego z zastosowaniem blachy UltraCor (Construction of a ground-coating facility using UltraCor sheet metal)”, Archiwum Instytutu Inżynierii Lądowej, vol. 24, pp. 359-368, 2017, doi: 10.21008/j.1897-4007.2017.24.26.
  • [36] EN 206-1 Concrete-Part 1: Specification, performance, production and conformity. European Standard EN, 2000.
  • [37] L. MacDonald, “Numerical modelling of vehicle loads on buried orthotropic steel shell structures”, M.A. thesis, Dalhousie University, Canada, 2010.
  • [38] B. Kunecki, “Laboratory test of the fire protection layer used in the soil-steel tunnel in Poland”, in Transportation Research Board 92nd Annual Meeting. Washington, 2013, pp. 3013-3015.
  • [39] ARMTEC, “BRIDGE PLATE Deep Corrugated Plate pushes the span of structural plate products to over 20 metres”. [Online]. Available: https://armtec.com/bridges-and-structures/bridge-plate/. [Accessed: 20. October. 2022].
  • [40] D. Beben, “The role of backfill quality on corrugated steel plate culvert behaviour”, The Baltic Journal of Road and Bridge Engineering, vol. 12, no. 1, pp. 1-11, 2017, doi: 10.3846/bjrbe.2017.01.
  • [41] C. Machelski and L. Korusiewicz, “Contact interaction between corrugated steel shell and the soil backfill determined based on the measurements of shell deformations”, Archives of Civil Engineering, vol. 67, no. 1, pp. 57-79, 2021, doi: 10.24425/ace.2021.136461.
  • [42] M. Bakalarz, P.G. Kossakowski, and W. Wciślik, “Influence of soil backfill parameters on culvert load capacity with accordance to Eurocodes and Sundquist-Pettersson calculating method”, Archives of Civil Engineering, vol. 67, no. 3, pp. 77-91, 2021, doi: 10.24425/ace.2021.138044.
  • [43] H. El Naggar, A. Campbell, and I. Ezzeldin, “Effect of the employed material model on the predicted behaviour of corrugated metal pipes”, Transportation Research Record, vol. 2675, no. 10, pp. 1364-1372, 2021, doi: 10.1177/03611981211016461.
  • [44] K. Kim and C.H.Yoo, “Design loading on deeply buried box culverts”, Journal of Geotechnical and Geoenvironmental Engineering, vol. 131, no. 1, pp. 20-27, 2005, doi: 10.1061/(ASCE)1090-0241(2005)131:1(20).
  • [45] J.M. Duncan, “Behavior and design of long-span metal culverts”, Journal of the Geotechnical Engineering Division, vol. 105, pp. 399-418, 1979.
  • [46] R.K. Zahedi, P. Alimouri, H.K. Zahedi, and M. Shishesaz, “Investigating peak stresses in fitting and repair patches of buried polyethylene gas pipes”, Frontiers of Structural and Civil Engineering, vol. 14, pp. 147-168, 2020, doi: 10.1007/s11709-019-0587-6.
  • [47] A. Wadi, L. Pettersson, and R. Karoumi, “On predicting the ultimate capacity of a large-span soil-steel composite bridge”, International Journal of Geosynthetics and Ground Engineering, vol. 6, pp. 1-13, 2020, doi: 10.1007/s40891-020-00232-z.
  • [48] D. Łydżba, A. Różański, M. Sobótka, D. Stefaniuk, G. Chudy, and T. Wróblewski, “Mechanical behavior of soil-steel structure subjected to live loads and different water conditions”, Archiwum Instytutu Inżynierii Ladowej, vol. 23, pp. 163-174, 2017, doi: 10.21008/j.1897-4007.2017.23.16.
  • [49] C. Machelski, “Classification of soil-steel structures due to shell deformation changes during backfilling”, Transportation Overview, vol. 41, no. 9, pp. 1-10, 2016, doi: 10.35117/A_ENG_16_09_01.
  • [50] C. Machelski, A. Czerepak, O. Basar, “Stiffness of corrugated steel plate on buried in surroundig soil in ecological bridge structure, Ce/Papers, vol. 3, no. 5-6, pp. 316-323, 2019, doi: 10.1002/cepa.1206.
  • [51] E.B. Flener, “Soil-steel interaction of long-span box culverts – performance during backfilling”, Journal of Geotechnical and Geoenvironmental Engineering, vol. 136, no. 6, pp. 823-832, 2010, doi: 10.1061/(asce)gt.1943-5606.0000287.
  • [52] M. Mumot, “Balastowanie powłok mostów gruntowo-powłokowych (Ballasting of coatings of ground-shell bridges)”, Transportation Overview, vol. 3, pp. 16-18, 2015.
  • [53] B. Liu, et al., “Effect of parameters on soil-structure interaction of a buried corrugated steel arch bridge”, The Open Civil Engineering Journal, vol. 5, pp. 154-162, 2011, doi: 10.2174/1874149501105010154.
  • [54] AASHTO-LRFD Load resistance factor design. American Association of State Highway and Transportation Officials, 2017.
  • [55] AASHTO M145-91 Standard practice for classification of soils and soil-aggregate mixtures for highway construction purposes. 2012.
  • [56] ASTM D. 2-98 Standard practice for classification of soils for engineering purposes (unified soil classification system). 2011.
  • [57] A. Wadi and L. Pettersson, “Recent research on flexible culverts in sloping terrain”, Archiwum Instytutu Inzynierii Ladowej, vol. 23, pp. 293-299, 2017, doi: 10.21008/j.1897-4007.2017.23.27.
  • [58] A. Wadi, L. Pettersson, and R. Karoumi, “Flexible culverts in sloping terrain: Numerical simulation of soil loading effects”, Engineering Structures, vol. 101, pp. 111-124, 2015, doi: 10.1016/j.engstruct.2015.07.004.
  • [59] A. Wadi, “Flexible culverts in sloping terrain: Research advances and application”, Licentiate thesis, Royal Institute of Technology KTH, 2015.
  • [60] C. Regier, N.A. Hoult, and I.D. Moore, “Laboratory study on the behavior of a horizontal-ellipse culvert during service and ultimate load testing”, Journal of Bridge Engineering, vol. 22, no. 3, 2017, doi: 10.1061/(ASCE)BE. 1943-5592.0001016.
  • [61] A.S. Nowak and O. Iatsko, “Revised load and resistance factors for the AASHTO LRFD Bridge Design Specifications”, PCI Journal, vol. 62, pp. 46-58, 2017.
  • [62] H. Mohammed, J.B. Kennedy, and P. Smith, “Improving the response of soil-metal structures during construction”, Journal of Bridge Engineering, vol. 7, no. 1, pp. 6-13, 2002, doi: 10.1061/(ASCE)1084-0702(2002)7:1(6).
  • [63] L. Korusiewicz, “Testing of a large-span soil-shell structure without stiffeners during backfilling process”, Roads and Bridges – Drogi i Mosty, vol. 14, pp. 203-218, 2015, doi: 10.7409/rabdim.015.014.
  • [64] L. Korusiewicz and B. Kunecki, “Behaviour of the steel box-type culvert during backfilling”, Archives of Civil and Mechanical Engineering, vol. 11, pp. 637-650, 2011, doi: 10.1016/s1644-9665(12)60106-x.
  • [65] R.B. Seed and C.Y. Ou, “Measurements and analyses of compaction effects on a long-span culvert”, in Durability, strength, and analysis of culverts and tunneling machines. Washington, 1986, pp. 37-45.
  • [66] Z. Manko and D. Beben, “Research on steel shell of a road bridge made of corrugated plates during backfilling”, Journal of Bridge Engineering, vol. 10, no. 5, pp. 592-603, 2005, doi: 10.1061/(asce)1084-0702(2005)10:5(592).
  • [67] K. Embaby, M.H. El Naggar, and M. El Sharnouby, “Performance of large-span arched soil-steel structures under soil loading”, Thin-Walled Structures, vol. 172, art. no. 108884, 2022, doi: 10.1016/j.tws.2022.108884.
  • [68] CAN/CSA-S6-06 Canadian Highway Bridge Design Code. Canada Standard Association, 2010.
  • [69] H. Yokota, and D. M. Frangopol, “Bridge maintenance, safety, management, life-cycle austainability and innovations”, in Proceedings of the Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020). Sapporo, Japan: CRC Press, 2020.
  • [70] M. Sobótka, “Numerical simulation of hysteretic live load effect in a soil-steel bridge”, Studia Geotechnica et Mechanica, vol. 36, no. 1, pp. 104-110, 2014, doi: 10.2478/sgem-2014-0012.
  • [71] M. Sobótka and C. Machelski, “Hysteretic live load effect in soil-steel structure”, Engineering Transactions, vol. 64, no. 4, pp. 493-499, 2016.
  • [72] C. Machelski, “Dependence of deformation of soil-shell structure on the direction of load passage”, Roads and Bridges – Drogi i Mosty, vol. 13, no. 3, pp. 223-233, 2014, doi: 10.7409/rabdim.014.015.
  • [73] C. Machelski, M. Sobótka, and S. Grosel, “Displacements of shell in soil-steel bridge subjected to moving load: determination using strain gauge measurements and numerical simulation”, Studia Geotechnica et Mechanica, vol. 44, no. 1, pp. 1-12, 2021, doi: 10.2478/sgem-2021-0028.
  • [74] C. Machelski and M. Mumot, “Corrugated shell displacements during the passage of a vehicle along a soil-steel structure”, Studia Geotechnica et Mechanica, vol. 38, no. 4, pp. 25-32, 2016, doi: 10.1515/sgem-2016-0028.
  • [75] H. Sezen, K.Y. Yeau, and P.J. Fox, “In-situ load testing of corrugated steel pipe-arch culverts”, Journal of Performance of Constructed Facilities, vol. 22, no. 4, pp. 245-252, 2008, doi: 10.1061/(ASCE)0887-3828(2008)22:4(245).
  • [76] K.Y. Yeau, H. Sezen, and P.J. Fox, “Load performance of in situ corrugated steel highway culverts”, Journal of Performance of Constructed Facilities, vol. 23, no. 1, pp. 32-39, 2009, doi: 10.1061/(ASCE)0887-3828(2009)23:1(32).
  • [77] K.Y. Yeau, H. Sezen, and P.J. Fox, “Simulation of behavior of in-service metal culverts”, Journal of Pipeline Systems Engineering and Practice, vol. 5, no. 2, 2014, doi: 10.1061/(ASCE)PS.1949-1204.0000158.
  • [78] C. Machelski, P. Tomala, and M. Mońka, “Research on the interface elements in soil-steel structures based on the in situ test”, in Modern Trends in Research on Steel, Aluminium and Composite Structures. Taylor & Francis, 2021, pp. 106-112, doi: 10.1201/9781003132134-10.
  • [79] J. Nowacka, D. Beben, and T. Maleska, “Analysis of soil-steel bridge with EPS geofoam under static loads”, in Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations. CRC Press, 2021, pp. 1816-1823.
  • [80] A. Wysokowski, “Influence of single-layer geotextile reinforcement on load capacity of buried steel box structure based on full-scale laboratory tests”, Thin-Walled Structuresures, vol. 159, art. no. 107312, 2021, doi: 10.1016/j.tws.2020.107312.
  • [81] T. Maleska, A. Wysokowski, and D. Beben, “Impact of reinforcement layer in soil-steel culvert on laboratory and numerical tests”, in Environmental Challenges in Civil Engineering II. Cham: Springer International Publishing, 2023, pp. 139-148.
  • [82] D. Beben, “Experimental study on the dynamic impacts of service train loads on a corrugated steel plate culvert”, Journal of Bridge Engineering, vol. 18, no. 4, pp. 339-346, 2013, doi: 10.1061/(ASCE)BE.1943-5592.0000395.
  • [83] E. B. Flener and R. Karoumi, “Dynamic testing of a soil-steel composite railway bridge”, Engineering Structures, vol. 31, no. 12, pp. 2803-2811, 2009, doi: 10.1016/J.ENGSTRUCT.2009.07.028.
  • [84] A. Andersson, Dynamic behaviour of soil-steel composite bridges for high-speed railways. Stockholm, 2020.
  • [85] D. Beben, “Corrugated steel plate culvert response to service train loads”, Journal of Performance of Constructed Facilities, vol. 28, no. 2, pp. 376-390, 2014, doi: 10.1061/(ASCE)CF.1943-5509.0000422.
  • [86] A. Mahgoub and H. El Naggar, “Assessment of the seismic provisions of the CHBDC for CSP culverts”, in International Conference GeoOttawa. Geo Ottawa, Nova Scotia, Canada, 2017, pp. 1-4.
  • [87] A. Mahgoub and H. El Naggar, “Effect of the cross-sectional rigidity on the static and seismic behavior of CSP culverts”, in Proceedings of the 3rd World Congress on Civil, Structural, and Environmental Engineering, ICGRE, vol. 153. 2018, pp. 153-159, doi: 10.11159/icgre18.153.
  • [88] T. Maleska and D. Beben, “Behaviour of soil-steel composite bridges under strong seismic excitation with various boundary conditions”, Materials, vol. 16, no. 2, pp. 1-27, 2023, doi: 10.3390/ma16020650.
  • [89] T. Maleska and D. Beben, “Behaviour of corrugated steel plate bridge with high soil cover under seismic excitation”, MATEC Web of Conferences, vol. 174, art. no. 04003, 2018, doi: 10.1051/matecconf/201817404003.
  • [90] G.J. Fairless and D. Kirkaldie, “Earthquake performance of long-span arch culverts”, New Zealand Transport Agency Research Report, vol. 366, 2008.
  • [91] I.D. Moore and B. Taleb, “Metal culvert response to live loading: Performance of three-dimensional analysis”, Transportation Research Record, vol. 1656, no. 1, pp. 37-44, 1999, doi: 10.3141/1656-05.
  • [92] D. Beben and A. Stryczek, “Numerical analysis of corrugated steel plate bridge with reinforced concrete relieving slab”, Journal of Civil Engineering and Management, vol. 22, no. 5, pp. 585-596, 2016, doi: 10.3846/13923730.2014.914092.
  • [93] R.W. Brachman, I.D. Moore, and A.C. Mak, “Ultimate limit state of deep-corrugated large-span box culvert”, Transportation Research Record, vol. 2201, no. 1, pp. 55-61, 2010, doi: 10.3141/2201-07.
  • [94] A. Wadi, L. Pettersson, and R. Karoumi, “FEM simulation of a full-scale loading-to-failure test of a corrugated steel culvert”, Steel and composite structures, vol. 27, no. 2, pp. 217-227, 2018, doi: 10.12989/scs.2018.27.2.217.
  • [95] A.C. Lougheed, “Limit states testing of a buried deep-corrugated large-span box culvert”, M.Sc. thesis, Queen’s University Kingston, Canada, 2008.
  • [96] A. Wysokowski, “Full scale tests of various buried flexible structures under failure load”, Scientific Reports, vol. 12, pp. 1-14, 2022, doi: 10.1038/s41598-022-04969-7.
  • [97] L. Pettersson J. Leander and L. Hansing, “Fatigue design of soil steel composite bridges”, Archiwum Instytutu Inżynierii Lądowej, vol. 12, pp. 237-242, 2012.
  • [98] J. Leander, A. Wadi, and L. Pettersson, “Fatigue testing of a bolted connection for buried flexible steel culverts”, Archiwum Instytutu Inżynierii Lądowej, vol. 23, pp. 153-162, 2017, doi: 10.21008/j.1897-4007.2017.23.15.
  • [99] H. Mohammed and J.B. Kennedy, “Fatigue resistance of corrugated steel sheets bolted lap joints under flexture”, Practice Periodical on Structural Design and Construction, vol. 14, no. 4, pp. 242-245, 2009, doi: 10.1061/(ASCE)SC.1943-5576.0000021.
  • [100] J. Vaslestad, L. Janusz, B. Bednarek, and Ł. Mielnik, “Instrumented full-scale test with geogird above the crown of corrugated steel box culvert”, in Proceedings of the Seventh International Conference On Geosynthetics, Geosynthetics State of the Art Recent Developments. 2002, pp. 1153-1155.
  • [101] L. Janusz and A. Madaj, Engineering objects with corrugated steel plates. Design and construction. Warszawa: WKiŁ, 2019 (in Polish).
  • [102] A. Wysokowski, C. Machelski, and J. Howis, Ecological soil-steel structures in transportation engineering. Wrocław: DWE, 2022 (in Polish).
  • [103] C. Machelski, Testing of soil-steel bridge structures. Wrocław: DWE, 2020 (in Polish).
  • [104] K. Embaby, M.H. El Naggar, and M. El Sharnouby, “Response evaluation of large-span ultradeep soil-steel bridges to truck loading”, International Journal of Geomechanics, vol. 21, no. 10, art. no. 04021186, 2021, doi: 10.1061/(ASCE)GM.1943-5622.0002159.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c61281a-11da-453b-85b7-ef81ad2664c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.