PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

EL and ITG Characterization of Large Areas Black Silicon Solar Cells VIA Screen Painting

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Ocena EL i ITG czarnych krzemowych ogniw słonecznych o dużej powierzchni wykonanych przez drukowanie maski
Języki publikacji
EN
Abstrakty
EN
A simple process of texturing silicon (Si) surfaces using gold (Au)-catalyzed wet chemical etching was used to form black Si (BS) on a (100) p-type substrate. The surface became uniformly black after 6 min, with a resulting reflectivity of < 2% over the 400 nm to 1100 nm wavelength range. Large areas (153.18 cm 2) of black Si solar cells (BSSCs) with an n + -p-p + structure were also fabricated using conventional processes, including POCl3 diffusion, screen printing, and co-firing. The resulting cells were divided into two groups according to the emitter (46 and 37 Ω/), and their output parameters were studied. The best convention efficiency (Eff) was < 10%. The open-circuit voltage (Voc) was particularly low because of poor surface passivation, and the shunt resistance (Rsh) linearly decreased with the series resistance (Rs). Electroluminescence (EL) and infrared thermography (ITG) measurements were conducted to characterize the BSSCs. Both the emissivity and temperature were low and nonuniform. Optimizing the fabrication process by reducing the etching depth and lowering the dopant sheet resistance led to significant improvement in Voc (~48 mV) and Eff (~3.8% absolute). EL and ITG measurements indicate that Rs is another important factor that accounts for the poor properties of the BSSCs.
PL
Do wytworzenia czarnego krzemu (BS) na podłożu typu p-Si(100) zastosowano prosty sposób teksturowania powierzchni krzemowej metodą chemicznej akwaforty na mokro z zastosowaniem, jako katalizatora, nanocząstek złota (Au). Podłoże staje się jednolicie czarne po 6 min, osiągając współczynnik odbicia < 2% w zakresie długości fali od 400 nm do 1100 nm. Wykonano również dużą powierzchnię czarnych krzemowych ogniw słonecznych (BSSC), ze strukturą n + - p -n +, konwencjonalnymi metodami obejmującymi dyfuzję POC13,drukowanie maski i wyżarzanie. Otrzymane ogniwa dzielą się na dwie grupy w zależności od emitera (46 i 37Ω/): zbadano ich wyjściowe parametry. Najlepsza uzyskana wydajność wynosi < 10%. Napięcie obwodu otwartego (Voc) jest szczególnie niskie z powodu słabej pasywacji powierzchni, a rezystancja równoległa (Rsh) liniowo maleje z rezystancją szeregową (Rs). Charakterystykę BSSC określają pomiary elektroluminescencji (EL) i tomografii w podczerwieni (ITG).Zarówno emisyjność jak i temperatura są niskie i niejednorodne. Optymalizacja procesu wykonana przez zmniejszenie głębokości akwaforty i obniżenie rezystancji warstwy domieszkowania prowadzi do znaczącej poprawy Voc (ok. 48mV) i Eff (ok. 3,8%).
Rocznik
Strony
151--154
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
autor
  • Institute of Electrical Engineering, Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Chinese Academy of Sciences, Beijing 100190, P. R. China
  • Graduate University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
autor
  • Institute of Electrical Engineering, Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Chinese Academy of Sciences, Beijing 100190, P. R. China
autor
  • Institute of Electrical Engineering, Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Chinese Academy of Sciences, Beijing 100190, P. R. China
autor
  • Institute of Electrical Engineering, Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Chinese Academy of Sciences, Beijing 100190, P. R. China
  • Graduate University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
autor
  • Institute of Electrical Engineering, Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Chinese Academy of Sciences, Beijing 100190, P. R. China
  • Graduate University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
autor
  • Institute of Electrical Engineering, Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Chinese Academy of Sciences, Beijing 100190, P. R. China
autor
  • Institute of Electrical Engineering, Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Chinese Academy of Sciences, Beijing 100190, P. R. China
autor
  • Institute of Electrical Engineering, Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Chinese Academy of Sciences, Beijing 100190, P. R. China
autor
  • Institute of Electrical Engineering, Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Chinese Academy of Sciences, Beijing 100190, P. R. China
  • Graduate University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
autor
  • Institute of Electrical Engineering, Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Chinese Academy of Sciences, Beijing 100190, P. R. China
  • Graduate University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
autor
  • Eoplly New Energy Technology Co., Ltd. Nantong, Jiangsu 226602, P. R. China
autor
  • Eoplly New Energy Technology Co., Ltd. Nantong, Jiangsu 226602, P. R. China
autor
  • Beijing NMC Co., Ltd., Beijing 100015, P. R. China
Bibliografia
  • 1. H. Sai, H. Fujii, et al., Numerical analysis and demonstration of submicron antireflective textures for crystalline silicon solar cells, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on (2006), pp. 1191– 1194.
  • 2. K. Nishioka, S. Horita, et al., Antireflection subwavelength structure of silicon surface formed by wet process using catalysis of single nano-sized gold particle, Solar Energy Materials and Solar Cells, vol. 92, (2008), pp. 919–922.
  • 3. S. Koynov, M. S. Brandt, et al., Metal-induced seeding of macropore arrays in silicon, Advanced Materials, vol. 18, (2006), pp. 633.
  • 4. T. K. Sarma, D. Chowdhury, et al., Synthesis of Au nanoparticle-conductive polyaniline composite using H2O2 as oxidising as well as reducing agent, Chemical Communications, (2002), pp. 1048–1049.
  • 5. K. Tsujino, M. Matsumura, et al., Texturization of multicrystalline silicon wafers by chemical treatment using metallic catalyst, 2003.
  • 6. K. Tsujino, M. Matsumura, et al., Texturization of multicrystalline silicon wafers for solar cells by chemical treatment using metallic catalyst, Solar Energy Materials and Solar Cells, vol. 90, (2006), pp. 100–110.
  • 7. S. Koynov, M. S.Btandt, et al., Black multi-crystalline silicon solar cells, PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, vol. 1, (2007), pp. R53–R55.
  • 8. K. Nishioka, T. Sueto, et al., Antireflection structure of silicon solar cells formed by wet process using catalysis of single nano-sized gold or silver particle, Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE (2009), pp. 169–171.
  • 9. H.-C. Yuan, V. E.Yost, et al., Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules, Applied Physics Letters, vol. 95, (2009), pp. 123501–123503.
  • 10. 1K. Bothe, K. Ramspeck, et al., Luminescence emission from forward- and reverse-biased multicrystalline silicon solar cells, Journal of Applied Physics, vol. 106, (2009), pp. 104510-1- 104510-8.
  • 11. O. Breitenstein, J. Bauer, et al., On the detection of shunts in silicon solar cells by photo- and electroluminescence imaging, Progress in Photovoltaics, vol. 16, (2008), pp. 325–330.
  • 12. T. Fuyuki, H. Kondo, et al., "One shot mapping of minority carrier diffusion length in polycrystalline silicon solar cells using electroluminescence," in Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference - 2005, ed, 2005, pp. 1343–1345.
  • 13. M. Glatthaar, J. Giesecke, et al., Spatially resolved determination of the dark saturation current of silicon solar cells from electroluminescence images, Journal of Applied Physics, vol. 105, (2009), pp. 113110-1-113110-5.
  • 14. D. Hinken, K. Ramspeck, et al., Series resistance imaging of solar cells by voltage dependent electroluminescence, Applied Physics Letters, vol. 91, (2007), pp. 182104-1-182104-3.
  • 15. 1X. Sun, S. Dong, et al., One-step polyelectrolyte-based route to well-dispersed gold nanoparticles: Synthesis and insight, Materials Chemistry and Physics, vol. 96, (2006), pp. 29–33.
  • 16. C. Chen and P. Kuo, Gold nanoparticles prepared using polyethylenimine adsorbed onto montmorillonite, Journal of Colloid and Interface Science, vol. 293, (2006), pp. 101–107.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c586804-f78f-4b3a-93ad-797576dcfa3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.