PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Grey Cast Iron Locally Reinforced Using 3D Printing Scaffold Insert

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an innovative method of creating the layered castings. The innovation relies on application the 3D printing insert obtaining in SLM (selective laser melting) method. This type of scaffold insert made from pure Ti powder, was placed into mould cavity directly before pouring by grey cast iron. In result of used method was obtained grey cast iron casting with surface layer reinforced by titanium carbides. In range of studies were carried out metallographic researches using light microscope and scanning electron microscope, microhardness measurements and abrasive wear resistance. On the basis of obtaining results was stated that there is a possibility of reinforcing surface layer of the grey cast iron casting by using 3D printing scaffold insert in the method of mould cavity preparation. Moreover there was a local increase in hardness and abrasive wear resistance in spite of the precipitation of titanium carbides in surface layer of grey cast iron. While the usable properties of composite surface layer obtained in result of use of the method presented in the paper, strongly depend of dimensions of scaffold insert, mainly parameters Re and Ri.
Rocznik
Strony
99--102
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • Silesian University of Technology, Department of Foundry Engineering, Gliwice, Poland
autor
  • Silesian University of Technology, Department of Foundry Engineering, Gliwice, Poland
autor
  • Silesian University of Technology, Department of Foundry Engineering, Gliwice, Poland
autor
  • Silesian University of Technology, Department of Foundry Engineering, Gliwice, Poland
Bibliografia
  • [1] Szajnar, J., Dulska, A., Wróbel, T. & Suchoń, J. (2014). Diffusion of C and Cr during creation of surface layer on cast steel casting. Archives of Metallurgy and Materials. 59(3), 1085-1087. DOI: 10.2478/amm-2014-0186.
  • [2] Szajnar, J., Walasek, A. & Baron, C. (2013). Tribological and corrosive properties of the parts of machines with surface alloy layer. Archives of Metallurgy and Materials. 58(3), 931-936. DOI: 10.2478/amm-2013-0104.
  • [3] Rudol, F. (1969). Reinforcement of cast surfaces with hard materials. Przegląd odlewnictwa. 11, 381-385. (in Polish).
  • [4] Szajnar, J., Walasek, A., Baron, C. (2013). The description of the mechanism for the alloy layer forming process based on the experimental examination. In. 22st International Conference on Metallurgy and Materials, METAL 2013, 15st-17rd May 2013, (pp. 134-139). Brno – Czech Republic.
  • [5] Dobrzański, L.A. (2003). Engineering materials and materials design. Warsaw: WNT. (in Polish).
  • [6] Xiao, X., Ye, S., Yin, W. & Xue, Q. (2012). HCWCI/ carbon steel bimetal liner by liquid-liquid compound lost foam casting. Journal of Iron and Steel Research. 19(10), 13-19.
  • [7] Song, M.S., Zhang, M.X., Zhan, S.G., Huang, B. & Li, J.G. (2008). In situ fabrication of TiC particulates locally reinforced aluminum matrix composites by self-propagating reaction during casting. Materials Science and Engineering. 25 January 2008. 473(1-2), 166-171.
  • [8] Wróbel, T. (2014). Characterization of bimetallic castings with an austenitic working surface layer and an unalloyed cast steel base. Journal of Materials Engineering and Performance. 5(23), 1711-1717.
  • [9] Górny, Z. (1987). Reinforced and multilayer castings. Solidification of Metals and alloys. 11, 135-164. (in Polish).
  • [10] Binczyk, F., Czerwiński, E. & Krzemień, E. (2001). Crystalisation of gray and alloy cast iron on two- layer rolls. Archiwum Odlewnictwa. 1(1), 34-41. (in Polish).
  • [11] Žic, S., Džambas, I. & Konić, M. (2009). Possibilityies of implementing bimetallic Hammer castings in crushing industries. Metalurgija. 48(1), 51-54.
  • [12] Król, M., Tański, T. (2016). Surface Quality Research for Selective Laser Melting of Ti-6Al-4V Alloy, Archives of Metallurgy and Materials. 61(3), 1291-1296.
  • [13] Oczoś, K. (2007). New materials in the incremental molding process. Mechanik. 3, 125-130. (in Polish).
  • [14] Patent Application P.418486.
  • [15] Studnicki, A., Gromczyk, M., Kondracki, M., Suchoń, J., & Szajnar, J. (2015). Primary Crystallization Studies and Abrasion Analysis of Cr-Ni-Mo Cast Steel. Archives of Foundry Engineering. 15(4), 75-80.
  • [16] Studnicki, A., Dojka, R., Gromczyk, M. & Kondracki, M. (2016). Influence of Titanium on Crystallization and Wear Resistance of High Chromium Cast Iron. Archives of Foundry Engineering. 16(1), 117-123.
  • [17] Cholewa, M. & Dziuba–Kałuża, M. (2009). Studies of structural and mechanical properties of aluminium scaffold castings. Archives of Foundry Engineering. 9(3), 29-34.
  • [18] Dobrzański, L.A., Macek, M., Tomiczek, B., Nuckowski, P.M., Nowak, A.J. (2016). The influence of the dispersion method on the microstructure and properties of MWCNTs/AA6061 composites. Archives of Metallurgy and Materials. 61(2), 1229-1234.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c4818d9-56a9-4bd9-87a5-0e91856fe71e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.