PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modeling and preliminary validation of drag-based vertical axis wind turbine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main purpose of this article is to verify and validate the mathematical description of the airflow around a wind turbine with vertical axis of rotation, which could be considered as representative for this type of devices. Mathematical modeling of the airflow around wind turbines in particular those with the vertical axis is a problematic matter due to the complex nature of this highly swirled flow. Moreover, it is turbulent flow accompanied by a rotation of the rotor and the dynamic boundary layer separation. In such conditions, the key aspects of the mathematical model are accurate turbulence description, definition of circular motion as well as accompanying effects like centrifugal force or the Coriolis force and parameters of spatial and temporal discretization. The paper presents the impact of the different simulation parameters on the obtained results of the wind turbine simulation. Analysed models have been validated against experimental data published in the literature.
Rocznik
Strony
19--38
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr., wz.
Twórcy
  • Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44-100 Gliwice, Poland
Bibliografia
  • [1] Burton T., Sharpe D., Jenkins N., Bossanyi E.: Wind energy handbook. John Wiley & Sons Ltd, Chicester 2001.
  • [2] Hau E.: Wind turbines. Fundamentals, technologies, application, economics, second edition. Springer-Verlag, Berlin Heidelberg 2006.
  • [3] Ericsson S., Bernhoff H., Leijon M.: Evaluation of different turbine concepts for wind power. Renew. Sust. Energ. Rev. 12(2008), 1419–1434.
  • [4] Islam M.R., Mekhilef S., Saidur R.: Progress and recent trends of wind energy technology. Renew. Sust. Energ. Rev. 21(2013), 456–468.
  • [5] Pope K., Dincer I., Naterer G.F.: Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines. Renew. Sust. Energ. Rev. 35(2010), 2102–2113.
  • [6] Kamoji M.A., Kedarel S.B., Prabhu S.V.: Experimental investigations on single stage, two stage and three stage conventional Savonius rotor. Int. J. Energ. Res. 35(2008), 32:877–895.
  • [7] Sagaut P.: Large Eddy Simulation for Incompressible Flows – An Introduction. Springer-Verlag, Berlin Heidelberg 1998.
  • [8] Pope S.B.: Turbulent Flows. Cambridge University Press, 2011.
  • [9] Bradshaw P.: Turbulence. Springer-Verlag, Berlin Heidelberg 1976.
  • [10] Savonius S.J.: The S-rotor and its applications. Mechanical Engineering 53(1931), 333–337.
  • [11] Catia VR5R20 Documentation Dassault Systems 1999–2009.
  • [12] ANSYS ICEM CFD 15.0 Userñs manual Southpointe. Canonsburg (USA) Ansys Inc., 2013.
  • [13] ANSYS Fluent 15.0 Userñs manual Southpointe. Canonsburg (USA) Ansys Inc., 2013.
  • [14] Patankar S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington, DC. 1980.
  • [15] Issa R.I.: Solution of implicitly discretized fluid flow equations by operator splitting. J. Comput. Phys. 62(1986), 40–65.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c4687c0-2dd4-407a-8655-608cff8fe7a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.