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Abstract 

This study presents the influence of different kinds of damping on transverse and longitudinal vibrations of 

hydraulic cylinder in a mining prop. The dissipation of vibration energy in the model is caused by 
simultaneous internal damping of viscoelastic material of beams that model the system, external viscous 

damping and constructional damping. Constructional damping (modelled by the rotational viscous dampers) 

occurs as a result of movement resistance in the cylinder supports. The eigenvalues of the system with respect 
to changes in system geometry with two values of load and for a selected and variable damping coefficient 

values were calculated. 
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1. Introduction 

A hydraulic cylinder as an object of research studies on dynamics of mechanical systems 

has been extensively investigated in the number of studies. Most of the published studies 

focused on the interactions between the cylinder tube and piston rod. Results of the 

investigations of the dynamic response of the model of a cylinder to axial impulse were 

presented in paper [1]. The work [2] presents an analysis of the effect of initial 

inaccuracy of connection between the piston and cylinder tube on critical loading force 

in the cylinder. Many authors analysed the effect of sealing or the medium on the 

cylinder's dynamics and dynamic stability of cylinder. In study [3] calculations of free 

vibration frequencies were extended with the investigations of the dynamic stability of 

the cylinder by means of determination of geometrical parameters and load at the time of 

losing the stability were presented. In paper [4] the problem of the stability and free 

vibrations of a slender system in the form of a hydraulic cylinder subjected to Euler's 

load was carried out. The studies [5] and [6] present the effect of internal damping on 

vibrations of a support beam with a mass attached to a free end of the beam and on 

stability of a support column loaded with a follower force, respectively. The influence of 

small internal and external damping on stability of non-conservative beam systems is 

described in paper [7]. Equally interesting publication concerning the effect of external 

damping on vibration of beams with stepped cross-section is the study [8]. The effect of 

structural damping of fixations on free vibration of the linear Bernoulli-Euler beam was 

presented in the study [9]. 
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In study [10] dissipation of vibration energy in the model of hydraulic cylinder – 

boom crane system occurs as a result of simultaneous internal damping of the 

viscoelastic material of the beam used in the model and the constructional damping in 

the supports of the cylinder and crane boom. The constructional damping of supports 

was modelled using rotational viscous dampers. The problem to be considered in the 

study [11] is the natural vibration of the system consisting of two clamped-free rods 

carrying tip masses to which several double spring-mass systems are attached across the 

span. The study is concerned with longitudinal vibrations of this mechanical system and 

the major contribution of this study is to derive a general formulation for the exact 

solution of the system described by using the Green's function method. 

This study analyses the simultaneous effect of the constructional damping, internal 

damping, external damping and the influence of changes in system geometry on the 

transverse and longitudinal vibrations of hydraulic cylinder in a mining prop. The results 

obtained in the study were presented in 2D figures and spatial presentations. 

2. Mathematical Model 

A scheme of the considered system is presented in Fig. 1. The model of a hydraulic 

cylinder is composed of four beams. Two of them model a cylinder tube (l11, l12) and two 

- piston rod (l21, l22) in the cylinder. The liquid in the cylinder was adopted as the 

medium of load transfer between the piston and the cylinder along the length filled with 

liquid. The liquid rigidity in the cylinder was modelled by the translational spring. 

Stiffness coefficient of spring was denoted by kS. 

In adopted model dissipation of vibration energy was caused by simultaneous 

internal damping, external damping and constructional damping. Internal damping of the 

viscoelastic material for individual parts of hydraulic cylinder was characterized by 

Young's modulus Emn and viscosity coefficients E*mn. External damping of medium 

surrounding the system were denoted by coefficient ce. Constructional damping occurs 

as a result of movement resistance in the piston and the cylinder supports and it was 

modelled by the rotational viscous dampers. Damping coefficients of rotational viscous 

dampers were denoted by cR. 

The boundary problem connected to the free vibrations of the considered non-

conservative (due to damping) system was formulated on the basis of Hamilton’s 

principle in the following form: 
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where: T – kinetic energy, V – potential energy, δWN – virtual work of non-

conservative forces originating from damping. 
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Figure 1. Diagram and beam model of a hydraulic cylinder with damping 

The vibration equations for individual beams are known and have the following form: 
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where:  
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where: m,n = 1,2 (ce = 0 for m = 2 and n = 1) 

Wmn (xmn, t) – transverse displacement of beams that model cylinder and piston rod 

Umn (xmn, t) – longitudinal displacement of beams that model cylinder and piston rod 

Emn – Young's modulus for individual beams, 

E*
mn – material viscosity coefficient, 

Jmn – moment of inertia in beam cross-sections, 

Amn – cross-sectional areas of the beams, 
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rmn – beam material density, 

ce – viscous damping coefficient, 

P – cylinder loading force (at the length l12 of the cylinder tube coverage with the piston 

rod in the cylinder P=0) 

xmn – spatial coordinates, t – time 

Solutions of equations (2) and (3) are in the form: 
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where: ω* – the complex eigenvalue of the system, 1-=i  

Substitution of (4) and (5) into (2) and (3) leads to, respectively: 
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Boundary conditions:  
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The solution of equations (6) and (7) are expressed in the form of functions: 
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The boundary problem is solved numerically for the eigenvalues ω*. Depending on the 

solution adopted, the roots ω* are complex numbers (that represent the damped vibration 

frequencies Re(ω*) and damping Im(ω*) in the considered system) and they may accept 

positive or negative value. In this paper, presentation of the results was based on positive 

values of the real and imaginary parts of solutions. 

3. Numerical Calculation Results 

Calculations were carried out for a cylinder used in a mining prop. Computations were 

carried out for the data contained in Table 1. Dimensionless damping parameters: η for 

internal damping, µ for constructional damping, and ν for external damping were placed 

below the table. 

Table 1. Geometrical and material data adopted in the study 

Quantity Symbol Unit Value 

Cylinder tube - external diameter  1211 DD =  mm 290 

Cylinder tube - internal diameter 1211 dd =  mm 250 

Piston rod - external diameter 2221 DD =  mm 160 

Piston rod - internal diameter 2221 dd =  mm
 

120 

Cylinder tube and piston rod density mnr  kg/m3 7.86e3 

Young's modulus mnE  Pa 21e11 

 

Damping parameters: 

mn

mn

hE

E
*

=h , 
d

Lc Ce
3

=n , 
d

CR=m , 
CP

P
p = ,  

(11) 

å

å

=

==
2

1,

2

1,42

nm

mnmn

nm

mnmn

C

JE

A

Lh

r
, å

=

=
2

1,nm

mnmnmnmnC JEALd r , 

where: PC – the critical load of the cylinder extended to LC =4m and 221211 lllLC ++= . 
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The results of the calculations are presented in Figures 2 to 5. The system was loaded 

with the longitudinal force P (p=0 and p=0.3). The dependency of the eigenvalues (real 

parts Re(ω1
*) and imaginary parts Im(ω1

*)) on coefficients of constructional damping µ, 

external damping ν, internal damping η and total length of cylinder that ranged from 

LC=2.6m to LC=4m was also determined. The relationships between the first eigenvalue 

of cylinder and changes its total length LC and coefficient of constructional damping µ at 

p=0.3 without internal and external damping in the system are presented in the form of 

spatial diagrams in Figure 2. 

 

   

Figure 2. The dependency of the first eigenvalue (Re(ω*) and Im(ω*)) for the cylinder on 

total length LC and constructional damping µ at η=0, ν =0 and p=0.3 

As can be seen in the figure above, the higher value of Im(ωn
*) then the more the 

amplitudes of a particular (n) mode of vibration are damped. Figure 3 presents the 

maximum values of Im(ω*
max) for the first mode of vibration in the examined system 

depending on the hydraulic cylinder length LC for two values of loading. 

 

Figure 3. The relationships between the maximum values of Im(ω*
max) for the first mode 

of vibration in the cylinder and the extension total length LC (for η=0 and ν=0) 

Next investigations focused on consideration of effect of different kind of damping on 

cylinder vibration. The dependency of real and imaginary parts of the first eigenvalue of 

the hydraulic cylinder on extension total length LC for selected values of damping 

(η=0.02, ν=0.5, µ=0.5) and for two values of loading are presented in Figure 4. 
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Figure 4. The dependency of the first eigenvalue (Re(ω*) and Im(ω*)) for the cylinder on 

extension total length LC 

The next figure (Figure 5) presents the change in the first eigenvalue of the hydraulic 

cylinder depending on the external damping ν and internal damping η without loading 

and loaded with the force p=0.3 for selected length of cylinder LC=3m. The 

investigations were carried out for optimal constructional damping value µ=0.5. 

     

Figure 5. The dependency of the first eigenvalue (Re(ω*) and Im(ω*)) for the cylinder on 

internal damping η and external damping ν at µ=0.5 and LC =3 

4. Conclusions 

This study presents a beam model of a hydraulic cylinder based on the system used in 

mining props. The computations for the model of transverse and longitudinal vibrations 

in a hydraulic cylinder with damping were carried out. The model of damping took into 

consideration the internal damping of the beams that modelled a cylinder tube and a 

piston rod, external damping and constructional damping that modelled motion 

resistance in the supports. Substantial changes can be observed in the damped 

frequencies Re(ω1
*) and in degree of amplitude decay Im(ω1

*) in the case of changes the 

length of hydraulic cylinder LC and coefficient of constructional damping µ (Figure 2). 

An increase in constructional damping causes the increase in the values of degree of 

amplitude decay Im(ω1
*) to maximum values, followed by Im(ω1

*)→0 where μ→∞. 

These substantial changes in both Re(ω*) and Im(ω*) are caused by considerable 

intervention in the conditions of system fixation (in extreme cases, the fixation points are 

changed from joint mountings into rigid mountings). The length of hydraulic cylinder 
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extension for which the degree of vibration amplitude decay is the highest allows for 

determination of optimum lengths of the hydraulic cylinder with respect to minimum 

vibration amplitudes in the system (Figure 3). It can be concluded based on the 

calculations that introduction of the internal and external damping causes only 

insignificant changes in the first eigenvalue (Figure 5). The results presented in the study 

help determine the geometric parameters and values of the coefficients that characterize 

damping of the system for which the maximum degree of amplitude decay is maintained. 
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