Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A mathematical model for control by transient modes of gas flows in the long-distance gas pipeline is considered in the paper. The long-distance pipeline is considered in the model as the system of Line segments serially connected via compressor stations. Gas motion in such system is described by the non-linear system of equations of gas dynamics. In the frame of this model the integral parameters which determine the expenditure of energy and durations of the transient mode are introduced. These parameters can be used for formulation the problems for optimal control steady-state and transient modes of operation of main-gas pipelines.
Czasopismo
Rocznik
Tom
Strony
25--32
Opis fizyczny
Bibliogr. 16 poz., rys., wz.
Twórcy
autor
- Kuyavy and Pomorze University in Bydgoszcz,
autor
- PJSC “UKRTRANSGAZ” The Branch “Research Institute of Gas Transportation”
autor
- Lviv National Politechnic University
Bibliografia
- 1. Tsarenko A. 2007. Overview of Gas Market in Ukraine. www.case-ukraine.com.ua
- 2. Kralik J., Stiegler P., Vostry Z. and Zavorka J. 1984. Modelling the Dynamics of Flow in Gas Pipelines. IEEE Transactions on System, Man, and Cybernetics. Vol. 14, No 4, 586–596.
- 3. Kralik J., Stiegler P., Vostry Z. and Zavorka J. 1984. Universal Dynamic Simulation Model of Gas Pipeline Networks. IEEE Transactions on System, Man, and Cybernetics. Vol. 14, No 4, 597 – 606.
- 4. Yedrouj M. Osiadacz, A. J. A 1989. Comparison of a finite element method and a finite difference method for transient simulation of a gas pipeline. Appl. Math. Modelling, 13, 606-618.
- 5. Gato L. M. C., Henriques J. C. C. 2005. Dynamic behaviour of high-pressure natural-gas flow in pipelines. International Journal of Heat and Fluid Flow. Vol 26, 817–825.
- 6. Prashanth R. H., Narasimhan S. Bhallamudi S. M. 2006. Simulation and State Estimation of Transient Flow in Gas Pipeline Networks Using a Transfer Function Model. Ind. Eng. Chem. Res. Vol. 45, 3853-3863.
- 7. Langelandsvik, L. I., Kunkel, G. J., Smits, A. J. 2008. Flow in a commercial steel pipe. Journal of Fluid Mechanics. Vol. 595, 323-339.
- 8. Behbahani-Nejad M., Shekari Y. 2009. Reduced Order Modelling of Natural Gas Transient Flow in Pipelines. International Journal of Mathematical, Physical and Engineering Sciences. Vol. 3:3, 168-172.
- 9. Chaczykowski M. 2010. Transient Flow in Natural Gas Pipeline – The Effect of Pipeline Thermal Model. Applied Mathematical Modelling. Vol. 34, 1051–1067.
- 10. Nouri-Borujerdi A. 2011. Transient modelling of gas flow in pipelines following catastrophic failure// Mathematical and Computer Modelling. Vol. 54, 3037–3045.
- 11. Helgaker J. F, Oosterkamp A., Langelandsvik L. I., Ytrehus T. 2014. Validation of 1D flow model for high pressure offshore natural gas pipelines. Journal of Natural Gas Science and Engineering. Vol 16, 44-56.
- 12. Oosterkampa A., Helgakera J. F., Ytrehus T. 2015. Modelling of Natural Gas Pipe Flow with Rapid Transients.– Case Study of Effect of Ambient Model. Energy Procedia. Vol 64, 101 – 110.
- 13. Fletcher C. A. J. 1984. Computational Galerkin Methods. Springer-Verlag. 309.
- 14. Dolinskii A., Draganov B., Kozirskii V. 2012. Nonequilibrium State of Engineering systems – ECONTECHMOD. An international quarterly journal. Vol. 1, № 1, 33–34.
- 15. Batluk V., Basov M. and Klymets’. 2013. Mathematical model for motion of weighted parts in curled flow. - ECONTECHMOD. An international quarterly journal. Vol. 2, No 3, 17-24.
- 16. Artyukh A., Sidorov M. 2014. Mathematical modeling and numerical analysis of nonstationary plane-parallel flows of viscous incompressible fluid by R-functions and Galerkin method. - ECONTECHMOD. An international quarterly journal. Vol.3, No.3, 03-11.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c418693-cb83-4bf6-8510-8f11aeac122d