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Abstract. A mathematical model for control by 
transient modes of gas flows in the long-distance gas 
pipeline is considered in the paper. The long-distance 
pipeline is considered in the model as the system of line 
segments serially connected via compressor stations. Gas 
motion in such system is described by the non-linear 
system of equations of gas dynamics. In the frame of this 
model the integral parameters which determine the 
expenditure of energy and durations of the transient mode 
are introduced. These parameters can be used for 
formulation the problems for optimal control steady-state 
and transient modes of operation of main-gas pipelines. 

Key words: gas-main pipeline, transient modes of 
operation, models of gas dynamics, control by transient 
process, efficiency of gas transportation, duration of 
transient process.  

 
INTRODUCTION 

 
Long-distance gas pipelines are used in many 

countries for natural gas delivery from the producing 
areas to market areas. The gas transmission system (GTS) 
of Ukraine resolves two main functions: supplies the 
internal customers by natural gas and transits it to Central 
and Eastern European’s countries [1]. The length of the 
Ukrainian gas-main pipelines is over 37 thousands km. 
They are provided by 71 compressor stations, the overall 
power of which exceeds 5400 MW. High power of the 
compressor stations, high pipeline’s capacity, which 
substantially exceeds the average annual gas flow through 
it, and availability of underground gas storage facilities of 
capacity 31.109 m3 make it possible to deliver big amo-
unts of gas on long distances in short time periods [1]. 

The expenditures of energy for gas transportation are 
dependent on mode of GTS operation. Steady-state 
operate modes are the most effective ones if the maximal 
pressure in the pipeline is close to maximum allowable 
pressure and the compressor stations work with the 
highest efficiency. But in practice the necessity to use 
transient modes under which the inlet and outlet pressures 
and flow density in the pipelines vary in time. In the 
transient modes the expenditures of energy can be 
considerably higher in comparison with the stationary 
modes. In this connection the problem of minimization of 
energy costs of gas transportation in the transient modes 
of operation of gas-main pipelines becomes actual.  

A mathematical model for control by transient modes 
of gas flows in the long-distance gas pipeline is 
considered in the paper. In the frame of this model the 
integral parameters which determine the expenditure of 
energy and durations of the transient mode are introduced. 
These parameters can be used for formulation the 
problems for optimal control by steady-state and transient 
modes of operation of main-gas pipelines.  

 

THE PROBLEM STATEMENT 

We consider a long-distance pipeline as the system of 
line pipelines (segments) serially connected via 
compressor stations. Each segment is long pipeline. Gas 
motion in such system is described by the non-linear 
system of equations of gas dynamics. The equations of 
this system bound the parameters of gas state (pressure 
P , mass density ρ , and temperature T ) and the 

parameters of gas motion (velocity V  and mass flux J ) 
in each segments. The system should be complemented 
by the conditions, which take into account the effect of 
the compressor stations on the gas flow. These conditions 
couple the gas-dynamics parameters of adjoining 
segments. 

In stationary modes the state and flow parameters in 
each segment are dependent just on the spatial coordinate 
along he tube’s axis whereas the interface conditions are 
constant. In transient modes the interface conditions 
change with time whereas the state and flow parameters 
are functions of the spatial coordinate x  and  time t : 

 

( ),P P x t= , ( ),x tρ = ρ , ( ),T T x t=  ( ),V V x t= , 

( ),J J x t= . 

 
These functions can be determined by solving the 

boundary-initial value problem, formulated within the 
mathematical model describing the mass, momentum and 
energy transfer in each segment. With the use of the 
obtained solution one can calculate integral parameters of 
the transient flow – the mass of the gas containing in each 
segment, the duration of the transient process, the 
expenditure of energy spent on its realization etc. 

We suppose that inlet and outlet pressures can be 
measured with sufficient precision as functions of time:  
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( )in inP P tλ λ= , ( )out outP P tλ λ= . 

 
We can use these functions as the boundary 

conditions for each segment. In such way we define two 
functionals, which for any pair of functions:  

 

( ) ( ){ },in outP t P tλ λ  

 
determine two positive numbers: τ  – the duration of the 
transient process, and W  – the expenditure of energy 
spent on this process realization. 

Similarly, if to suppose that inlet and outlet mass 
fluxes can be measured:  

 

( )in inJ J tλ λ= , ( )out outJ J tλ λ= , 

 
we can consider another three pair of boundary 

conditions:  
 

( ) ( ){ },in outP t J tλ λ , ( ) ( ){ },in outJ t P tλ λ  and ( ) ( ){ },in outJ t J tλ λ .  

 
The boundary-value problems, formulated with the 

use of these conditions, define the functionals for 
determination τ  and W  for corresponding transient 
process, controlled by given pair of the parameters.  

 
THE MODEL FOR GAS-DYNAMIC IN A LONG 

PIPELINE 
 
We will conduct the study within the one-

dimensional model of gas-dynamics, describing non-
stationary motion of natural gas in a cylindrical pipe of 
constant diameter. Such models were considered by many 
authors [2-12]. Here we restrict ourselves by the 
isothermal case, supposing the temperature T  as the 
given parameter, independent on coordinate x  and time 
t . In this case the flows in the segment are described by 
two partial differential equations – the equation for mass 
balance (equation of continuity):  

 

 0
V

t x

∂ρ ∂ρ+ =
∂ ∂

 (1) 

 
and equation for balance of momentum:  
 

 ( )2 0R

V h
V P g f

t x x

∂ρ ∂ ∂+ ρ + + ρ + =
∂ ∂ ∂

 (2) 

 
where: g  stands for acceleration of gravity; ( )h h x=  is 

the function, determining the elevation of the pipeline’s 
axis; Rf  stands for the density of average frictional 

force [4].  
Density ρ  of the gas is depended on its pressure P  

and temperature T . The dependence is defined by the 
equation of state:  

 

 2
0gP R z T c z= µ ρ = ρ ,    2

0 gc RT≡ µ , (3) 

 

where: R  - stands for the universal gas constant, gµ  - is 

molar mass of the gas, z  - compressibility factor of the 
gas, 0c  - stands for sound velocity in the gas with molar 

mass gµ  at temperature T .  

The compressibility factor z  takes into account 
departure of thermodynamic properties of real gas from 
the properties of ideal gas. The are different empirical 
formulas representing this thermodynamic parameter as 
function of pressure P  and temperature T . Among them 
the formula of American Gas Association (AGA), which 
is valid for pressures up to 7 MPa: 

 

( ) ( ) ( ) ( ), 1 0,257 0,533c c cz P T P P P P T T= + ⋅ − ⋅ ⋅ , (4) 

 

where: cT  and cP  stand for critical temperature and 

pressure 
The force Rf  in formula (2) takes into account the 

viscous friction in gas volume, in the boundary layer and 
on the inside surface of the pipe’s wall. For sufficiently 
high flow’s velocity (turbulent flow mode) Rf  can be 

determined by formula: 
 

 
2R

V
f V

D

λ
= ρ , (5) 

 

where: λ  - stands for the coefficient of hydraulic 
resistance, D  - is pipe’s inner diameter. 

The Haaland explicit equation [6] enables to express 
parameter λ  through the height ε  of roughness on the 
inner surface of the pipe’s wall and Reynolds number Re 
of the flow: 

 

 
1.11

1 6.9
1.8lg

3.7

D

Re

 ε = − +   λ   
. 

 
Using formulas (3)-(5) one can reduce mathematical 

model for motion of the gas in the pipeline to non-linear 
system of two partial differential equations. Any pair of 
the parameters ( ),Vρ , ( ), Jρ , ( ),P V  or ( ),P Q  can be 

used as key functions for this system. Here: 
 

J V= ρ    and   2 4Q V D= π  

 
are the mass and volumetric flow rates. Though the 
systems of equations formulated for different pairs of 
parameters are mathematically equivalent, the chosen key 
functions can be significant for algorithms for numerical 
solving of the corresponding problems. With this in view 
we chose the parameters ( ),x tρ = ρ  and ( ),J J x t=  as 

the key functions for mathematical model. So, we obtain 
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 0
J

t x

∂ρ ∂+ =
∂ ∂

 (6) 

 
2

0
2

J JJ P J dH
g

t x x D dx

 ∂ ∂ ∂ρ ∂ λ+ + + + ρ = ∂ ∂ρ ∂ ∂ ρ ρ 
. (7) 

 

As we can see the equation (6) of the system (6), (7) 
is a linear one in this case.  

Without restriction of generality we can treat the 
compressibility factor z  as a function of the state 
parameters ρ  and T . Hence of the base of (3) we have 

 

 ( ) ( ) ( ) ( )2
0

,
, , , ,

z TP
c Z T Z T z T

∂ ρ∂ = ρ ρ ≡ ρ + ρ
∂ρ ∂ρ

. (8) 

 

In particular, for compressibility factor in the form 
(4) relations (8) look like 

 

 

( )

( ) 2

1
, ,

1 0,257 0,533

1
, ,

1 0,257 0,533

c

c

c

c

z T
T

T

Z T
T

T

ρ =
ρ  − − ρ  

ρ =
 ρ  − −  ρ   

 (9) 

 

where: 2
0c cP cρ ≡ . 

If functions ( ),x tρ  and ( ),J x t  are known one can 

easily calculate the pressure ( ),P x t  and velocity ( ),V x t  

as functions of coordinate x  and time t :  
 

 ( )2
0P c z= ρ ρ ,     V J= ρ . (10) 

 

Let 0P  and 0J  be some characteristic values of 

pressure and mass flux. We introduce the normalized 
dimensionless coordinate, time and dependent variables: 

  

 0 0

0 0 0

2 1, , ,

, , ,

x t

L t

J P V
j p =

J P V

ρξ = − τ = ρ =
ρ

= =

ɶ

v
 (11) 

 

where: L  - is the section’s length, 0 0t L c=  - is the 

characteristic time, 0ρ  - stands for characteristic mass 

density, which corresponds to characteristic pressure: 
 

( )2
0 0 0 0P c z= ρ ρ , 

 
and characteristic velocity:  
 

0 0 0V J= ρ . 

In the dimensionless variables the system (6), (7) 
takes the form: 

 

 
0

j
Ma

∂ρ ∂+ =
∂τ ∂ξ
ɶ

, (12) 

. 
( )

2

2

1
,

0.

j j
Z T Ma

t Ma

j d
Ma

d

 ∂ ∂ρ ∂+ ρ + + ∂ ∂ξ ∂ξ ρ 

  γ+ β + ρ = ρ ξ 

ɶ
ɶ

ɶ

ɶ
ɶ

 (13) 

 

Here the denotations are used: 
 

 0 0

0 0 0

J V
Ma

c c
= =

ρ
, 

2

L

D

λβ = ,  0 0
0

0

,
c VH

H
H g

γ = = . 

 

In the stationary case: 
 

0j∂ρ ∂τ = ∂ ∂τ =ɶ . 

 
So, it follows from equation (12), that ( )j constξ = . 

With this, the equation (13) can be reduced to the form: 
 

 
( )

2 2 3

2 2 2

d
Ma j Ma

d d

d Z Ma j

γβ ρ + ρ
ρ ξ= −
ξ ρ ρ −

ɶ ɶ
ɶ

ɶ ɶ
. (14) 

 

Obtaining ordinary differential equation describes the 
steady-state distribution of the mass density in a pipeline 
in stationary mode. This non-linear equation can be 
solved numerically with the use a Runge-Kutta method. 
When the density ρ  of the gas is known one can calculate 

its pressure with the use of the state equation (3). 
 

THE MODEL FOR CONTROLLING OF THE 
TRANSIENT PIPELINE’S OPERATIONAL MODES  

 
The equations (12), (13) describe a wide class of non-

stationary (dynamic) motion of the gas in pipelines. We 
chose from this class so-called transient motions. So, each 
time we will consider a dynamic motion, which has been 
started from some known steady-state motion and will be 
finished as other steady-state motion. I.e. we will consider 
dynamic processes being transitions between two steady-
state processes.  

Let 0J  and 1J  be the mass fluxes in steady-state 

modes 0 (beginning mode) and 1 (finishing mode), 0P−  

and 0P+  be static inlet and outlet pressures acting in the 

mode 0, 1P−  and 1P+  be static inlet and outlet pressures 

acting in the mode 1.  
We can find pressure distributions in modes 0 and 1 

using the steady-state model (14). To do that we put in the 
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equation (14) 0 0
0j j J J= ≡ , solve this equation 

subordinating its solution ( )0 0ρ ≡ ρ ξɶ ɶ  to one of boundary 

conditions (15) at 0µ =  : 

 

 
1 1

,µ µ µ µ
− +ξ=− ξ=

ρ = ρ ρ = ρɶ ɶ ɶ ɶ ,    0,1λ = , (15) 

 

where: 

 ( )2
0 0,

P

c z P T

µ
µ −
− µ

−

ρ =
ρ

ɶ ,    ( )2
0 0,

P

c z P T

µ
µ +
+ µ

+

ρ =
ρ

ɶ . (16) 

 

Then we put in the equation (14) 1 1
0j j J J= ≡ , 

solve this equation, subordinating its solution ( )1 1ρ ≡ ρ ξɶ ɶ  

to one of boundary conditions (15) at 1µ = . 

We use the first of two conditions (15), when in the 
stationary mode µ  inlet pressure is given, and we use the 

second condition (15), when in the stationary mode µ  

outlet pressure is given.  
Using the obtained solution we can find the pressure 

distributions in stationary modes 0 and 1 ( )1P x  and 

( )2P x  in the section: 

 

 ( ) ( ) ( )( )2
0 0 0 0 ,P x P c x L z x L Tµ λ λ= ρ ρɶ ɶ . (17) 

 

We can find also the value of pressure on the opposite 
end of the pipe for both modes. For instance, if in the 
mode µ  the inlet pressure Pµ

− is given, then the outlet 

pressure Pµ
+  for this mode can be can be found as: 

 

( ) ( )( )2
0 0 1 1 ,P P c z Tλ λ λ

+ = ρ ρɶ ɶ . 

 
Otherwise, if the outlet pressure Pµ

+  is given, the 

outlet pressure will be found as: 
 

( ) ( )( )2
0 0 1 1 ,P P c z Tλ λ λ

− = ρ − ρ −ɶ ɶ . 

 
To attain the required flow parameters in the pipeline 

one can change the mechanical power, which the 
compressor stations transfer into the moving gas. That 
will be attended by varying of values of the gas-dynamics 
parameters on the both ends of the each section.  

We suppose, that inlet and outlet pressure, and, in 
some cases, inlet and/or outlet mass fluxes can be 
measured with necessary precision as. It means, that for 
each segment we dispose functions ( )P t± , representing 

the time variation of inlet and outlet pressures. In some 
case we can dispose functions ( )J t± , representing the 

time variation of the inlet and outlet fluxes. 
Such assumptions enables to consider independent 

problems for each segment and use for it four types of 
boundary conditions: i) on both ends pressure as functions 

of time are given (the conditions of the first kind); ii) on 
both ends flux as functions of time are given (the 
conditions of the second kind); iii) inlet pressure and 
outlet flux as functions of time are given; iv) inlet flux 
and outlet pressure as functions of time are given (the 
mixed boundary conditions). Due to this we consider for 
system (12), (13) the next boundary conditions: 

 

 ( ) ( )
1 1

,− +ξ=− ξ=
ρ = ρ τ ρ = ρ τɶ ɶ ɶ ɶ , (18) 

 ( ) ( )
1 1

,j j j j− +ξ=− ξ=
= τ = τ , (19) 

 ( ) ( )
1 1

, j j− +ξ=− ξ=
ρ = ρ τ = τɶ ɶ , (20) 

 ( ) ( )
1 1

,j j − +ξ=− ξ=
= τ ρ = ρ τɶ ɶ . (21) 

 

Here:  
 

 ( ) ( )
( )( )

0

2
0 0 0,

P t

c z P t T
±

±
±

τ
ρ τ =

τ ρ
ɶ ,   ( ) ( )0

0

J t
j

J
±

±

τ
τ =    (22) 

 

As the transient mode begins from the mode 0, we 
have the next initial conditions for system (12), (13): 

 

 ( )0 0

0 0
, j j

τ= τ=
ρ = ρ ξ =ɶ ɶ . (23) 

 

Four initial-boundary-value problems (12), (13), 
(18) (23); (12), (13), (18), (23); (12), (13), (19), (23); та 
(12), (13), (20), (23) define corresponding four models to 
control the transient flow in each section.  

We will restrict our consideration by control 
functions  ( )P t±  and ( )J t± , which are monotonous in the 

intervals 0 1,P P± ±   and 0 1,J J    correspondingly.  

To do this let consider the function: 
 

( )
0, 0,

, , 0 ,

1, ,

t

t t t

t

≤
ϕ ∆ = ∆ < ≤ ∆
 ∆ <

,   0∆ > ,         (24) 

 
with the use of which we represent the control functions 
in the forms: 
 

 
( ) ( ) ( )
( ) ( ) ( )

0 1 0

0 1 0

, ,

,

P

P P

P t P P P t

P t P P P t t

− − − − −

+ + + + +

= + − ϕ ∆

= + − ϕ − ∆
, 

 
( ) ( ) ( )
( ) ( ) ( )

0 1 0

0 1 0

, ,

, .

J

J J

J t J J J t

J t J J J t t

− −

+ +

= + − ϕ ∆

= + − ϕ − ∆
 (25) 

 
where: Pt  and Jt  are real constants which define 
delay/lead the outlet control functions relative to inlet 
ones. 

The boundary conditions (18)-(21) take the form:  
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( ) ( )
( ) ( )

0 1 0

1

0 1 0

1

, ,

,

ρ
− − − −ξ=−

ρ ρ
+ + + +ξ=+

ρ = ρ + ρ − ρ ϕ τ ∆

ρ = ρ + ρ − ρ ϕ τ − τ ∆

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

 (26) 

 
( ) ( )
( ) ( )

0 1 0

1

0 1 0

1

, ,

,

j

j j

j j j j

j j j j

−ξ=−

+ξ=+

= + − ϕ τ ∆

= + − ϕ τ − τ ∆
 (27) 

 
( ) ( )
( ) ( )

0 1 0

1

0 1 0

1

, ,

,j jj j j j

ρ
− − − −ξ=−

+ξ=+

ρ = ρ + ρ − ρ ϕ τ ∆

= + − ϕ τ − τ ∆

ɶ ɶ ɶ ɶ

, (28) 

 
( ) ( )
( ) ( )

0 1 0

1

0 1 0

1

, ,

,

jj j j j −ξ=−

ρ ρ
+ + + +ξ=+

= + − ϕ τ ∆

ρ = ρ + ρ − ρ ϕ τ − τ ∆ɶ ɶ ɶ ɶ

. (29) 

 
where: 

 
 

( )2
0 0 ,

P

c z P T

λ
λ ±
± λ

±

ρ =
ρ

ɶ , 
0

J
j

J

λ
λ = , 

,
,

P J
j

ot
ρ ±
±

∆
∆ = , 

,
,

0

P J
j t

t
ρτ = . 

 
 

Thereby due the suggested approach any of the 
control model (18) – (21) is defined by 7 scalar 
parameters. For instance for model defined by boundary 
conditions (28) they are 0 1, , PP P− − −∆ , 0 1, , JJ J− − −∆  and Jt . 

Solving the initial-boundary-value problem, 
corresponding to any of control model (18) – (21), we 
obtain two functions ( ),ρ ξ τɶ  and ( ),j ξ τ . With the use of 

these functions we can introduce integral measures which 
determine the duration of the transient process and the 
expenditure of energy for its realization.  

 
 

EVALUATION THE DURATION OF TRANSIENT 
MODE  

 
The gas containing in the pipeline is an inertial 

system. Transient processes in this system can still go on 
even after the compressor stations have gained the steady-
state modes. To evaluate the transient mode’s duration we 
introduce measures for deviation of the current state of 
the gas accumulated in the pipeline from its state in the 
stationary mode 1, to which the system tends.  

We consider two kinds of such measures. The 
measures of the first kind determine the deviations of the 
current values of gas-dynamic parameters on the ends of 
the section from their corresponding values in the 
stationary mode 1. Depending on the chosen control 
model (18)-(21), we will consider four such measure: 

 

 

( )
( )
( )
( )

( ) max ( ), ( ) ,

( ) max ( ), ( ) ,

( ) max ( ), ( ) ,

( ) max ( ), ( ) ,

j j j

j j

j j

− +

ρ ρ ρ
− +

ρ ρ
− +

ρ ρ
− +

δ τ = δ τ δ τ

δ τ = δ τ δ τ

δ τ = δ τ δ τ

δ τ = δ τ δ τ

, (30) 

 

where: 

 

( ) ( ) ( )

( ) ( )

1 1

1 1

1 1

1 1
1

1, 1,
( ) , ,

1, 1,
( ) , ( ) .

j jj j j j

j j− +

− +ρ ρ
− +

−

− τ − τ −
δ τ = δ τ =

ρ − τ − ρ ρ τ − ρ
δ τ = δ τ =

ρ ρ
ɶ ɶ ɶ ɶ

ɶ ɶ

. (31) 

 

The measures of second kind determine deviations of 
the current values of integral characteristic in pipeline’s 
volume. We will consider two kinds of such measures, 
which corresponds two equations of gas dynamics (6) and 
(7).  

The first measure ( )Mδ τ  defines deviation of the 

mass containing in the pipeline at the current moment τ  
from its value in the stationary state 1. The second one 
determines the current deviation the value of the 
momentum of gas containing in the pipelines: 

 

 

( ) ( )

( )

( )

1
1

1
1

1

1

1
1

1
1

,

( ) ,

,

( ) .

M

J

d

d

j j d

j

−

−

−

ρ ξ τ − ρ ξ ξ
δ τ =

ρ ξ ξ

ξ τ − ξ
δ τ =

∫

∫

∫

ɶ ɶ

ɶ

  (32) 

 

Let ε  a given positive real number:  
 

( ):ω ω ω
ε ετ δ τ = ε { }, , , , ,j i j M J∀ω∈ ρ ρ ρ . 

 
Then we define the real number:  
 

{ }Inf , , , , , ,j i j M Jω
ε ετ = τ ω = ρ ρ ρ  

 
as dimensionless duration of the transient process from 
stationary state 0 to stationary state 1.  

Introduced measures (30) and (31) of nonstationarity 
enable to evaluate quantitatively the duration of the 
transient process for any chosen control model (18) – 
(21).  

EVALUATION THE POWER EFFICIENCY OF 

TRANSIENT MODES 

Using the solution of the initial-boundary-value 
problems corresponding to any chosen control model (18) 
– (21), we can calculate the power of friction force Rf  at 

any moment τ : 
 

 
( )
( )

312 3
0

2 2
0 1

,
( )

8 ,R

jD J
W d

−

ξ τπ
τ = β ξ

ρ ρ ξ τ∫
ɶ

. (33) 

 

Due to this the energy efficiency of the transient 
mode can be evaluated as:  
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( )
( ) ( )

312
0

2 2
0 0 1 0

,
1,

2 ,

jJ
d d j d

ω
ε ετ τ

ε
−

ξ τ
η = β ξ τ τ τ

ρ ρ ξ τ∫ ∫ ∫
ɶ

 (34) 

 

Then we can compare parameter εη  to corresponding 

parameters 0η  and 1η , defining the expenditures of 

energy for the modes 0 and 1 correspondingly: 
 

( )
( )( )

20 1
0

2 20
0 12

J d

−

ξη = β
ρ ρ ξ

∫
ɶ

,
( )

( )( )

21 1
1

2 21
0 12

J d

−

ξη = β
ρ ρ ξ

∫
ɶ

. (35) 

 

Using introduced parameter εη  we can compare 

quantitatively different transient modes and different 
control models.  

 
NUMERICAL STUDY 

 
Consider an example of application the developed 

mathematical tools to study the control model (20).  
To numerical solving the initial-boundary-value 

problem (12), (13), (23), (28) we represent the sought-for 
functions ( ),ρ ξ τɶ  and ( ),j ξ τ  as Fourier-Legendre series 

expansions: 
  

 ( ) ( ) ( ) ( )
0 0

, ( ) , , ( )
N N

k k k k
k k

A P j B P
= =

ρ ξ τ = τ ξ ξ τ = τ ξ∑ ∑ɶ .(36) 

 

With the use of the spectral Galerkin method [13–16], 
we reduce equations (12), (13) to the system of ordinary 
differential equations: 

 

 
12 1

21 22 2

0

0

d

dt
d

dt

+ ⋅ + =
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The (37) is nonlinear one as elements of matrixes 21C , 

22C  are functionals of sought-for solution (36). Elements 

of vectors K 1 and K 2 are functionals of the given control 
functions of boundary conditions (28).  

System (37) was discretized on the uniform time grid 
with the use of the Crank–Nicolson’s difference scheme 
[13]. To solve the obtained nonlinear algebraic system of 
equations an iterative algorithm was developed.  

On fig.1,2 some results obtained by solving the 
problem (12), (13), (23), (28) are shown (arrows on the 
plots show time increasing). The numerical solution was 
obtained for the case, when mass flow rate in the pipeline 
is increased for 15 % under constant inlet pressure.  

The calculations were made for N = 15, time 
discretization was made with time step 0,05δτ = . 

 
Fig.1. Pressure distributions along the pipeline at the 

moments τ = 0; 4; 8; 12; 20 and 40 
 

 
Fig.2. Flux distributions along the pipeline at moments 

τ = 0; 4; 8; 12; 20 and 40 
 

The gas mixture in proportion: methane – 98.6 %, 
ethane – 0.15 %, carbon dioxide – 0.31 %, nitrogen – 
1.24 %. was considered. The next values for the task’s 
parameters were taken: the pipeline’s length L = 120 km, 
the pipeline’s inner diameter D = 1.338 m, the 
characteristic pressure Р0 = 6.65 MPa, the characteristic 
temperature Т = 300 К, the characteristic mass flux 
J0 = 468 kg / m 2s, the friction factor λ = 9.22·10 – 3. 
Calculated characteristic time and Mach number are: 

0 302.58t s= , 0.024Ma = , dimensionless friction factor 

413.46β = . 

On the fig. 3 the time dependences for the measures of 
nonstationarity are shown: the solid, dashed, chain and dotted 
lines correspond:  

 

( )J
−δ τ , ( )P

+δ τ , ( )Mδ τ  and ( )Jδ τ , 
 

respectively. 
We obtained the values: 
 

( ) 34.79 10J −
−δ τ = ⋅ ,    ( ) 33.24 10P −

+δ τ = ⋅ , 

( ) 31,28 10M −δ τ = ⋅    and   ( ) 36,42 10J −δ τ = ⋅    at 48τ = . 

On this basis we can conclude, that with precision 
36,42 10−⋅  the transient process’s duration, determined 

due to measure Jδ  equals 4
048 1,452 10t ≈ ⋅ s, i.e. is more 

the four hours. 
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Fig. 3. Dependences of the measures of 
nonstationarity on time τ  

 
 

The expenditure of energy referred to the constant 

( ) ( )2 2
0 02 8.143 J kgJβ ρ =  equal: 3,689J

εη =  (for 

transient mode), 0 2.744η =  (for stationary mode 0) and 
1 3,207η =  (for stationary mode 1). 

 
CONCLUSIONS 

 
1. The nonstationary one-dimensional initial-

boundary-value problems for gas dynamics in long-
distance pipeline have been considered. The problems 
describe transient processes arising in the pipeline under 
transition of the pipeline from one stationary operational 
mode to another. Several models to control the transient 
operational modes have been considered. They differ by 
the control functions, which determine time variations of 
the inlet and outlet control parameters (pressures and/or 
fluxes). The approach for parameterization of the control 
functions has been proposed. Due to it the control 
functions can be parameterized by several scalar 
parameters, among them – mean rates of inlet and outlet 
control parameters’ variations, and time shift between the 
output and input control actions. 

2. The approach to evaluation the duration and 
expenditure of energy of the transient operational mode 
has been proposed. The approach is based on the 
functionals which have been introduced to determine the 
measures for deviation of the current state of the gas 
accumulated in the pipeline from its state in the stationary 
mode, to which the system tends. The measures enable to 
compare quantitatively different transient modes which 
realized according to different control models with 
different control functions. The defined functionals can be 
used to formulate the problems for optimal control the 
steady-state and transient modes of operation of main-gas 
pipelines. 

3. The iterative algorithm for numerical solving of the 
nonlinear initial-boundary-value problems, which 
correspond to the proposed models for controlling the 
transient modes, has been developed. The approach is 
based on representation the solutions as Fourie-Legendre 
series expansion and time discretization of the sought-for 
functions with the use of the Crank–Nicolson’s difference 
scheme.  

4. The numerical experiments, which have been 
conducted for different control models, corroborated the 

high efficiency of the developed approaches and 
possibility of their application to model the transient 
processes in long-distance pipelines. The developed 
approaches and mathematical tools can be used to 
formulate the problems for optimal control the pipeline’s 
transient operational modes and to solve these problems 
by their reducing consequences of corresponding direct 
problems.  

5. Considered in the paper model of isothermal flow do 
not includes the expenditure of energy caused be heat 
exchange with environment. To raise the practical value of 
the developed approach it should be improved by taking 
into consideration the process of energy transfer.  
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