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Abstract. A mathematical model for control by A mathematical model for control by transient modes
transient modes of gas flows in the long-distanes gof gas flows in the long-distance gas pipeline is
pipeline is considered in the paper. The long-dista considered in the paper. In the frame of this maddel
pipeline is considered in the model as the systéime integral parameters which determine the expenditire
segments serially connected via compressor stateas energy and durations of the transient mode aredoted.
motion in such system is described by the non-tinedhese parameters can be used for formulation the
system of equations of gas dynamics. In the frafrtis  problems for optimal control by steady-state amatgient
model the integral parameters which determine thmodes of operation of main-gas pipelines.
expenditure of energy and durations of the transierde
are introduced. These parameters can be used for
formulation the problems for optimal control steadgte
and transient modes of operation of main-gas pipsli
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operation, models of gas dynamics, control by femts
process, efficiency of gas transportation, duratimin
transient process.

THE PROBLEM STATEMENT

f We consider a long-distance pipeline as the system
ine pipelines (segments) serially connected via
compressor stations. Each segment is long pipeGiaes.
motion in such system is described by the non-tinea
system of equations of gas dynamics. The equatidns
this system bound the parameters of gas states(pees
P, mass densityp, and temperatureT) and the

Long-distance gas pipelines are used in mararameters of gas motion (velocly and mass fluxJ)
countries for natural gas delivery from the prodgci in each segments. The system should be complemented
areas to market areas. The gas transmission sy&€8) by the conditions, which take into account the effef
of Ukraine resolves two main functions: supplieg ththe compressor stations on the gas flow. Theseitoons!
internal customers by natural gas and transits @gntral couple the gas-dynamics parameters of adjoining
and Eastern European’s countries [1]. The lengtthef segments.

Ukrainian gas-main pipelines is over 37 thousanas k  In stationary modes the state and flow parameters i
They are provided by 71 compressor stations, tregatlv €ach segment are dependent just on the spatiadinate
power of which exceeds 5400 MW. High power of th@long he tube’s axis whereas the interface comitare
compressor stations, high pipeline’s capacity, Whicconstant. In transient modes the interface conuftio
substantially exceeds the average annual gas foough change with time whereas the state and flow paensiet
it, and availability of underground gas storagelitis of ~ are functions of the spatial coordinateand timet :
capacity 3110° m®* make it possible to deliver big amo-

unts of gas on long distances in short time perjdts pP= P( X t), p= p(x,t), T= T( X t) \Y =V( X t),

The expenditures of energy for gas transportatien a _
dependent on mode of GTS operation. Steady-state J= ‘](X' t)'
operate modes are the most effective ones if thémaa
pressure in the pipeline is close to maximum alloea These functions can be determined by solving the
pressure and the compressor stations work with tf@undary-initial value problem, formulated withimet
highest efficiency. But in practice the necessityuse Mmathematical model describing the mass, momentuin an
transient modes under which the inlet and outlesgures energy transfer in each segment. With the use ef th
and flow density in the pipelines vary in time. e obtained solution one can calculate integral patarsef
transient modes the expenditures of energy can Hee transient flow — the mass of the gas contaimregach
considerably higher in comparison with the statigna segment, the duration of the transient process, the
modes. In this connection the problem of minimizatof ~expenditure of energy spent on its realization etc.
energy costs of gas transportation in the transiesdes We suppose that inlet and outlet pressures can be
of operation of gas-main pipelines becomes actual. measured with sufficient precision as functionsirog:

INTRODUCTION
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R"=R"(t), B =R™(t). P=Ru, T=¢ p, c=RT/y,, 3)

We can use these functions as the boundary _ )
conditions for each segment. In such way we defive Where: R - stands for the universal gas constany,- is

functionals, which for any pair of functions: molar mass of the gag, - compressibility factor of the
_ gas, ¢, - stands for sound velocity in the gas with molar
{P{” (1), Pf”t(t)} mass|,, at temperaturd .

_ N _ The compressibility factorz takes into account
determine two positive numbers: — the duration of the departure of thermodynamic properties of real gasf
transient process, an&/ — the expenditure of energythe properties of ideal gas. The are different eicgdi

spent on this process realization. formulas representing this thermodynamic paramaser
Similarly, if to suppose that inlet and outlet mas$unction of pressuré® and temperaturd . Among them
fluxes can be measured: the formula of American Gas Association (AGA), whic

is valid for pressures up to 7 MPa:
=30 (1), I =321,
z(P.T)=1+0,257(H )~ 0,534 ¥ B T/ 7. (4)
we can consider another three pair of boundary
conditions:
where: T, and P, stand for critical temperature and
(R (1), 32 (0}, {ar (1), R (0} and{al (1), 32 (0} . pressure
The force f; in formula (2) takes into account the
The boundary-value problems, formulated with theiscous friction in gas volume, in the boundaryelagnd
use of these conditions, define the functionals faon the inside surface of the pipe’s wall. For suéfintly
determination T and W for corresponding transient high flow's velocity (turbulent flow mode)f, can be

process, controlled by given pair of the parameters determined by formula:
THE MODEL FOR GAS-DYNAMIC IN A LONG AV
PIPELINE -
fo=——pV, 5
R=5p P (5)

We will conduct the study within the one-
dimensional model of gas-dynamics, describing non- . )
stationary motion of natural gas in a cylindricgpepof Where: A - stands for the coefficient of hydraulic
constant diameter. Such models were consideredamym resistanceD - is pipe’s inner diameter.
authors [2-12]. Here we restrict ourselves by the The Haaland explicitequation [6] enables to express
isothermal case, supposing the temperatlireas the ParameterA throughthe heighte of roughness on the
given parameter, independent on coordinat@nd time inner surface of the pipe’s wall ariReynolds numbeRe
t. In this case the flows in the segment are desdrty Of the flow:
two partial differential equations — the equation mass

balance (equation of continuity): 1 6.9 (D)}
Lo isig _+(_j .
NG Re (3.7
@ +ap_v =0 (1) ) )
ot ox Using formulas (3)-(5) one can reduce mathematical

model for motion of the gas in the pipeline to rimear
system of two partial differential equations. Angirmpof

the parameter¢p,V), (p,J), (P,V) or (P, Q) can be
VvV h used as key functions for this system. Here:
—_—+

9
o T PV HP)rpg + =0 2)

and equation for balance of momentum:

J=pV and Q=VnD?/4

where: g stands for acceleration of gravitii=h(X) is are the mass and volumetric flow rates. Though the
the function, determining the elevation of the fiijpEs systems of equations formulated for different paifs

axis; f, stands for the density of average frictionaparameters are mathematically equivalent, the chkeg
force [4]. functions can be significant for algorithms for nenial

Density p of the gas is depended on its pressBre solving of the corresponding problems. With thisviaw

and temperatureT . The dependence is defined by théVe chose the parametes=p(xt) and J = J(x 1) as
equation of state: the key functions for mathematical model. So, wiiob
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op 0J _ In the dimensionless variables the system (6), (7)
-t =0 (6)  takes the form:
ot ox
2 J|J o .
a_‘]+@@+i J_ +LL+gﬂp:0_ (7) @‘FMaﬂ:O
ot dpox ox\ p 2D p dx ot PT: , (12)
As we can see the equation (6) of the system 78), ( o 1 0P a(j2
is a linear one in this case. EEZ(PI)E"’M%_E el
Without restriction of generality we can treat the P (13)
compressibility factor z as a function of the state M i +dy~ -0
parameterg andT . Hence of the base of (3) we have ap E d—zp -
P _ _ 9z(p, T)
o Z(p.T), Z(p,T)= 4p. N+p o (8) Here the denotations are used:
In particular, for compressibility factor in therfo Ma = %o =£, B:ﬁ, y:i, H, = GoVo )
(4) relations (8) look like PoCo G 2D Ho g
1 .
2(p,T)= , In the stationary case:
1—’3(0,257— o,53%j i _
e . ©) 0p/dt=09j/at=0.
Z(p,T)= 7 . . .
o So, it follows from equation (12), thajt(&) = const.
1-—0,257- 0 53.;,-3
A T With this, the equation (13) can be reduced tddhe:
20 2% dy .5
where:p, =P,/¢ . d5 Ma?Bj p+Mad—Ep
If functions p(x,t) and J(xt) are known one can g = Z()p -MaZ (14)

easily calculate the pressufRyx,t) and velocityV (x, )

as functions of coordinate and timet : Obtaining ordinary differential equation descritibe

steady-state distribution of the mass density pipeline
z(p)p, Vv =J/p. (10) in stationary mode. This non-linear equation can be

solved numerically with the use a Runge-Kutta meétho

When the densityp of the gas is known one can calculate

Let B, and J, be some characteristic values ofits pressure with the use of the state equatian (3)

pressure and mass flux. We introduce the normalized
dimensionless coordinate, time and dependent \asab THE MODEL FOR CONTROLLING OF THE
TRANSIENT PIPELINE'S OPERATIONAL MODES

£= 21_1,1 -t P -P ’ The equations (12), (13) describe a wide clasof n
L to Po 11 stationary (dynamic) motion of the gas in pipelinége
J V] (1) chose from this class so-called transient motias.each

P
3 p :F'V: V. time we will consider a dynamic mation, which haeb
0 0 started from some known steady-state motion anbdbeil
finished as other steady-state motion. l.e. we edlisider

where: L - is the section’s lengtht, = L/c, - is the dynamic processes being transitions between twadgte
state processes.

characteristic time,p, - stands for characteristic mass | ot 39 and J* be the mass fluxes in steady-state

density, which corresponds to characteristic pressu modes 0 (beginning mode) and 1 (finishing modey,

p=¢ and P° be static inlet and outlet pressures acting in the
0 _Coz(po)po' . 1 _

mode 0, P° and P. be static inlet and outlet pressures
and characteristic velocity: acting in the mode 1.

We can find pressure distributions in modes 0 and 1
V, = J,/Ps - using the steady-state model (14). To do that werpilne
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equation (14) j=j°= O/JO , solve this equation of time are given (the conditions of the first Kind) on
both ends flux as functions of time are given (the
conditions of the second kind); iii) inlet pressuaed
conditions (15) apu =0 : outlet flux as functions of time are given; iv)enlflux
and outlet pressure as functions of time are giftae
mixed boundary conditions). Due to this we consiier

subordinating its solutiop® = ° (&) to one of boundary

f)“|£=fl =P~ F~)“|a:1 =p., A=01, (15) system (12), (13) the next boundary conditions:
where: Al =p-(1). 0, =p.(7), (18)
N p¥ - P! ey = 1-(1), ey =14 (1) 19
e CR T CR N e T "
0 ~ 0 0 iy 0 ﬁ|£:—1 =p. (-[)' j|£=1 =j, ('[) , (20)
j =j pl._ =p . 21
Then we put in the equation (14)=j'=J3"/J,, llees =1-(0) Ples =P (7) @D
solve this equation, subordinating its solutiph= §* (&)
to one of boundary conditions (15) jat=1. Here:
We use the first of two conditions (15), when ie th
stationary modeu inlet pressure is given, and we use the P. (rto) ) ( ) J, (TIO) (22)
- )T =—

second condition (15), when in the stationary mqde p: (1) = cozz( P(tt), T)po’
outlet pressure is given.
Using the obtained solution we can find the pressur

distributions in stationary modes 0 and F(x) and As the transient mode begins from the mode 0, we

have the next initial conditions for system (14A8)
P?(x) in the section: y (125X

Al =0"(8), =1 (23)
P()=R&B (F L) 48" (£ L), T (A7)

Four initial-boundary-value problems (12), (13),
We can find also the value of pressure on the dfgpos(18) (23); (12), (13), (18), (23); (12), (13), (19E3); Ta
end of the pipe for both modes. For instance, itha (12), (13), (20), (23) define corresponding fourdals to

mode p the inlet pressureP*is given, then the outlet control the transient flow in each section.
We will restrict our consideration by control

H i .
pressureP;" for this mode can be can be found as: functions P, (t) and J, (t), which are monotonous in the

P = Rep (1) Z(f))\ (1), T) intervalsl:IDf', Pj] and I:JO Jl:l correépondingly.
To do this let consider the function:

Otherwise, if the outlet pressurB! is given, the

outlet pressure will be found as: q)(t A) ) t/OA O<tts<(2 oo o
P =Re (-1) 4p*(-1). 7). Lo A<t

one can change the mechanical power, which tHg the forms:
compressor stations transfer into the moving gdmatT

will be attended by varying of values of the gasaiyics P(t)=P° +( P - I?°)¢( tAf)
parameters on the both ends of the each section. B o
We suppose, that inlet and outlet pressure, and, in R(t)‘ P+O+(P+1_ Eo)‘b(t_ tD’A+)
some cases, inlet and/or outlet mass fluxes can be 3 ()= +(J1_ Jo)d)(tAf),
measured with necessary precision as. It means fdaha (25)
each segment we dispose functioRs(t), representing J, (t)=2° +(J1— J°)¢( t- t’.Af)

the time variation of inlet and outlet pressures.sbme
case we can dispose function‘s_(t), representing the where: t* and t’ are real constants which define
time variation of the inlet and outlet fluxes. delay/lead the outlet control functions relative itdet

Such assumptions enables to consider independé&HEs. -
problems for each segment and use for it four tygles  The boundary conditions (18)-(21) take the form:
boundary conditions: i) on both ends pressure astions
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pl._, =p°+(p: -p°)d(1,4°), . i(-L0)-j j(1T)-j*
P elo el ey =P g g I
Ble... = +(P} -p7) o (r-7".4%) . . (31)
. o (e . p(-11)-pt p(L1)-p;
il =i+ (i =i%)6(r.al), o 6E(r)=‘%, &(1)= %
. . - 1
oo =10+ (i1 °)0(t-1',a1)
,3|£:7l =p° +(f>f —ﬁ?)d)(t,AE), The measures of second kind determine deviations of
. o (1 .0 S (28)  the current values of integral characteristic ipefine’s
Ygzag = +(J ) )¢(T_T ’A+) volume. We will consider two kinds of such measures
j|z:—1 =j° +(j o °)¢(T,Ai), 09 \(/\;r;?ch corresponds two equations of gas dynamicsu(él)
Bl =P0+(p: -p%)o(t-1.0) The first measured" (1) defines deviation of the
mass containing in the pipeline at the current mante
where: from its value in the stationary state 1. The sdcone
determines the current deviation the value of the
momentum of gas containing in the pipelines:
A A P,J P,J
S F%P“ 7’ jkzj_’AiJ:Att ’Tmztt_' )
c, Pzl B, o . N
o Po + 0 0 I|D(E,T)-pl(ﬁ)|d5
M) =2—; .
Thereby due the suggested approach any of the jpl(é)di (32)
control model (18) — (21) is defined by 7 scalar 1
parameters. For instance for model defined by baund j-| . (E T)_ '1|dE
conditions (28) they ar®°®, P, A", J°, 3}, A’ andt’. 5 (1) =2 net=l

Solving the initial-boundary-value  problem,
corresponding to any of control model (18) — (2dg

obtain two functionsd(,1) and j(&,1) . With the use of
these functions we can introduce integral measahésh

determine the duration of the transient process taed o
expenditure of energy for its realization. Tg):aw(T?) =¢ DwO{j,pip.d M J}.

jl

Let € a given positive real number:

Then we define the real number:
EVALUATION THE DURATION OF TRANSIENT

MODE ts=lnf{rg’,w=j,p,ip,q,M ,J}

The gas containing in the pipeline is an inertial
system. Transient processes in this system cdrgstion as dimensionless duration of the transient profesa
even after the compressor stations have gainestélagly- Stationary state O to stationary state 1.
state modes. To evaluate the transient mode’sidarate Introduced measures (30) and (31) of nonstatignarit
introduce measures for deviation of the currentestd enable to evaluate quantitatively the duration bé t
the gas accumulated in the pipeline from its siatthe transient process for any chosen control model ¢18)
stationary mode 1, to which the system tends. (21).

We consider two kinds of such measures. The ga yATION THE POWER EFFICIENCY OF
measures of the first kind determine the deviatiofthe
current values of gas-dynamic parameters on the ehd TRANSIENT MODES
the section from their corresponding values in the
stationary mode 1. Depending on the chosen control Using the solution of the initial-boundary-value
model (18)-(21), we will consider four such measure  problems corresponding to any chosen control m¢is)l

— (21), we can calculate the power of friction fort, at

& (1) = max(éj_ @) ([)) ) any momentt :
3 (1) = max(&° )5 (r)), N
i , , (30) _ %3 ¢ (& 1)
5 (1) =max(8’ @) () , W0 =85 jl A% (33)

(1) = max(é[’ @0 @ )) ,

Due to this the energy efficiency of the transient

. mode can be evaluated as:
where:
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(D))

p*(&,1)

dédt Tj'j(l,t)dt (34)

Then we can compare parametgrto corresponding

parametersn® and n', defining the expenditures of
energy for the modes 0 and 1 correspondingly:

(°) ()
20, I 20,

1

1 1

J

-1

dé .
(p(8))°

n°=p . =P (35)

dg
(7 (2))

Using introduced parametern, we can compare

guantitatively different transient modes and difar
control models.

NUMERICAL STUDY

Consider an example of application the developed

mathematical tools to study the control model (20).
To numerical solving the
problem (12), (13), (23), (28) we represent thegsbifior

functions p(€,1) and j(&,1) as Fourier-Legendre series
expansions:

b(&,1) =Y AMR(E), i(£1) = B.(OR(E) (36)

With the use of the spectral Galerkin method [13;-16

we reduce equations (12), (13) to the system oiharg
differential equations:

R c,B+K,=0
C e
E+C21E+C22[B +K 2=O

where:

A=(AM), A®D).... AD)
B =(B,(1), B(¥),..., By, (1))

The @7) is nonlinear one as elements of matrixes,
C,, are functionals of sought-for solution (36). Elese

of vectorsK ; andK, are functionals of the given control
functions of boundary conditions (28).

System (37) was discretized on the uniform timd gri
with the use of the CrarNicolson’s difference scheme
[13]. To solve the obtained nonlinear algebraidesysof
equations an iterative algorithm was developed.

On fig.1,2 some results obtained by solving the

problem (12), (13), (23), (28) are shown (arrowstbe
plots show time increasing). The numerical solutizas
obtained for the case, when mass flow rate in thelipe
is increased for 15 % under constant inlet pressure

initial-boundary-value

V. Chekurin, Yu. Ponomaryov, O. Khymko

The calculations were made foN=15, time

discretization was made with time stép=0, 05.

PfPD [ I

R

0.&

07

06
~1 -05 0 05 g

Fig.1. Pressure distributions along the pipeline at the
momentst = 0; 4; 8; 12; 20 and 40

i 1

1.1

—1 =035 0 45

Fig.2. Flux distributions along the pipeline at moments
1=0; 4, 8;12; 20 and 40

The gas mixture in proportion: methane — 98.6 %,
ethane — 0.15 %, carbon dioxide — 0.31 %, nitrogen
1.24 %. was considered. The next values for thk'sas
parameters were taken: the pipeline’s ledgth 120 km,
the pipeline’'s inner diameterD =1.338 m, the
characteristic pressurg, = 6.65 MPa, the characteristic
temperature 7= 300K, the characteristic mass flux
Jo =468 kgm?s, the friction factor A =9.22-10°2
Calculated characteristic time and Mach number are:
t, =302.58s, Ma=0.024, dimensionless friction factor

B=413.46.

On the fig. 3 the time dependences for the measires
nonstationarity are shown: the soldfshedchain and dotted
lines correspond:

3’ (1), 87 (1), 8 (1) and &’ (1),

respectively.
We obtained the values:

8’ (1)=4.79010°, &{(1)=3.24010°,
o (1)=1,28010° and &’(1)=6,42010° att=48.

On this basis we can conclude, that with precision
6,4210° the transient process’s duration, determined
due to measur®’ equals4&, = 1,452110s, i.e. is more
the four hours.
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high efficiency of the developed approaches and
possibility of their application to model the traag
processes in long-distance pipelines. The developed
approaches and mathematical tools can be used to
formulate the problems for optimal control the pipe's
transient operational modes and to solve theselgrab
by their reducing consequences of correspondingctir
problems.

5. Considered in the paper model of isothermal fiiow
not includes the expenditure of energy caused ls he
exchange with environment. To raise the practiedie of

0

1] 20

Fig. 3. Dependences of the measures of
nonstationarity on time

The expenditure of energy referred to the constant
(BJOZ)/(2p02)=8'143J ke equal: n] =3,689 (for

transient mode)n°® = 2.744 (for stationary mode 0) and 2.
n* = 3,207 (for stationary mode 1).

CONCLUSIONS 3

1. The nonstationary one-dimensional initial-
boundary-value problems for gas dynamics in long-
distance pipeline have been considered. The prablem,
describe transient processes arising in the pipalimder
transition of the pipeline from one stationary airemal
mode to another. Several models to control thesiesuh
operational modes have been considered. They differ 5.
the control functions, which determine time vaodas of
the inlet and outlet control parameters (pressarator
fluxes). The approach for parameterization of thetml
functions has been proposed. Due to it the contrgl
functions can be parameterized by several scalar
parameters, among them — mean rates of inlet atielt ou
control parameters’ variations, and time shift besgw the
output and input control actions.

2. The approach to evaluation the duration ang
expenditure of energy of the transient operationalle
has been proposed. The approach is based on the
functionals which have been introduced to deterntime g,
measures for deviation of the current state of dhs
accumulated in the pipeline from its state in ttagignary
mode, to which the system tends. The measuresestmbl
compare quantitatively different transient modesicivh
realized according to different control models withg,
different control functions. The defined functiosahan be
used to formulate the problems for optimal contiwe
steady-state and transient modes of operation of-gws
pipelines.

3. The iterative algorithm for numerical solvingtbé
nonlinear initial-boundary-value  problems, which
correspond to the proposed models for controllihg t
transient modes, has been developed. The appreach .
based on representation the solutions as Fouriefidrg
series expansion and time discretization of thegksttor
functions with the use of the CrafiXicolson’s difference
scheme.

4. The numerical experiments, which have been
conducted for different control models, corrobodathe

10.

the developed approach it should be improved bingak
into consideration the process of energy transfer.
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