Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Albian and Cenomanian marine sediments of the Silesian and Tatric basins in the Carpathian realm of the Western Tethys contain ferric and ferromanganese oxyhydroxides, visible macroscopically as brown stainings. They coat calcareous bioclasts and mineral clasts, fill pore spaces, or locally form continuous, parallel microlayers, tens of micrometers thick. Light-microscope (LM) and scanning-electron-microscope (SEM) obser- vations show that the coatings contain elongated capsules, approximately 3–5 µm across and enriched in iron and manganese, which may be remnants of the original sheaths of iron-related bacteria (IRB). Moreover, the ferric and ferromanganese staining observed under LM is similar to bacterial structures, resembling the sheaths, filaments and rods formed by present-day bacteria of the Sphaerotilus–Leptothrix group. All of the possible bacteria-like structures are well preserved owing to processes of early diagenetic cementation. If the observed structures are fossil IRB, these organisms could have played an important role in iron and manganese accumulation on the sea floor during Albian–Cenomanian time. The most plausible source of metals for bacterial concentration in the Silesian Basin might have been submarine low-temperature hydrothermal vents, as previously was hypothesized for Cenomanian–Turonian deposits on the basis of geochemical indices.
Wydawca
Czasopismo
Rocznik
Tom
Strony
371--385
Opis fizyczny
Bibliogr. 102 poz., rys., wykr.
Twórcy
autor
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Aleja Adama Mickiewicza 30, 30-059 Kraków, Poland
autor
- Institute of Geography, Pedagogical University of Cracow, Podchorążych 2, 30-084 Kraków, Poland
autor
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Aleja Adama Mickiewicza 30, 30-059 Kraków, Poland
- Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
autor
- Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
Bibliografia
- 1. Alt, J. C., 1988. Hydroihermal oxides and nontronite deposits on seamounts in the eastern Pacific. Marine Geology, 81: 227239.
- 2. Awramik, S. M. Schopf, J. W. & Walter, M. R., 1983. Filamentous fossil barteria from the Archean of Western Ausiraha. Precambrian Research, 20: 357-374.
- 3. Bac-Moszaszwili, M., Gaździcki, A. & Krajewski, K., 1979. Dolina Lejowa - Stoły - Żleb Żeleźniak - Hala Pisana - Kiry; Trasa B5. In: Lefeld, J. (ed.), Przewodnik LI Zjazdu Polskiego Towarzystwa Geologicznego; Zakopane, 13-15.09.1979. Wydawnictwa Geologiczne, Warszawa, pp. 190-197. [In Polish.]
- 4. Barale, L., D’atri, A. & Martire, L., 2013. The role of microbial activity in the generation of Lower Cretaceous mixed Fe-ox-ide-phosphate ooids from the Provenęal Domain, French Maritime Alps. Journal of Sedimentary Research, 83: 196- 206.
- 5. Bąk, K., 2006. Sedimentological, geochemical and microfaunal responses to environmental changes around the Cenomanian- Turonian boundary in the Outer Carpathian Basin; a record from the Subsilesian Nappe, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 23: 335-358.
- 6. Bąk, K., 2007a. Deep-water facies succession around the Cenomanian-Turonian boundary in the Outer Carpathian Basin: Sedimentary, biotic and chemical records in the Silesian Nappe, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 248: 255-290.
- 7. Bąk, K., 2007b. Environmental changes during the Cenomanian- Turonian boundary event in the Outer Carpathian bas ins: a synthesis of data from various tectonic-facies units. Annales Societatis Geologorum Poloniae, 77: 171-191.
- 8. Bąk, K., 2007c. Organic-rich and manganese sedimentation during the Cenomanian-Turonian boundary event in the Outer Carpathian Basin, a new record from the Skole Nappe, Po- land. Palaeogeography, Palaeoclimatology, Palaeoecology, 256: 21-46.
- 9. Bąk, K. & Bąk, M., 2013. Late Albian through Cenomanian foraminiferal asiemblage from the youngest deposits of Tatra Mouniains, Central Western Carpathians; biostratigraphical and palaeoecological aspects. Acta Geologica Polonica, 63: 223-237.
- 10. Bąk, K., Bąk, M. & Paul, Z., 2001. Barnasiówka Radiolarian Shale Formation - a new lithostratigraphic unit in the Upper Cenomanian-lowermost Turonian of the Polish Outer Carpathians. Annales Societatis Geologorum Poloniae, 71: 75-103.
- 11. Bąk, M., 2011. Tethyan radiolarians at the Cenomanian-Turonian Anoxic Event from the Apennines (Umbria-Marche) and the Outer Carpathians: Palaeoecological and Palaeoenvironmental implications. Studia GeologicaPolonica, 134: 7-279.
- 12. Bąk, M., Bąk, K. & Ciurej, A., 2005. Mid-Cretaceous spicule-rich flysch deposits in the Silesian Nappe of the Polish Outer Carpathians; radiolarian and foraminiferal biostratigraphy. Geological Quarterly, 49: 275-290.
- 13. Bąk, M., Bąk, K. & Ciurej, A., 2011. Palaeoenvironmental signal from the microfossils record in the Mikuszowice Cherts of the Silesian Nappe, Polish Outer Carpathians. In: Bąk, M., Kaminski, M. A. & Waśkowska, A. et al. (eds), Integrating Microfossil Records from the Oceans and Epicontinental Seas. Grzybowski Foundation Special Publication, 17, pp. 15-25.
- 14. Bennett, S. A., Achterberg, E. P., Connelly, D. P., Statham, P. J., Fones, G. R. & German, C. R., 2008. The distribution and stabilisation of dissolved Fe in deep-sea hydroihermal plumes. Earth and Planetary Science Letters, 270: 157-167.
- 15. Boulvain, F., De Ridder, Ch., Mamet, B., Préat, A. & Gillan, D., 2001. Iron microbial communties in Belgian Frasnian carbonate mounds. Facies, 44: 47- 60.
- 16. Brehm, U., Gorbushina, A. & Mottershead, D., 2005. The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. Palaeogeography, Palaeoclimatology, Palaeoecology, 219: 117-129.
- 17. Brown, C. J., Schoonen, M. A. A. & Candela, J. L., 2000. Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer. Journal of Hydrology, 237: 147-168.
- 18. Bryndal, T., 2014. Identification of small catchments prone to flash flood generation in the Polish Carpathians. Prace Monograficzne Uniwersytetu Pedagogicznego, Wydawnictwo Naukowe Uniwersytetu Pedagogicznego w Krakowie, 690: 3-180. [In Polish, English summary.]
- 19. Burtan, J. (ed.), 1964. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000 (bez czwartorzędu): arkusz Myślenice Wydawnictwa Geologiczne, Warszawa.
- 20. Burtan, J. & Szymakowska, F. (eds), 1964. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000 (bez czwartorzędu); arkusz Osielec sheet. Wydawnictwa Geologiczne, Warszawa.
- 21. Croal, L. R., Johnson, C. M., Beard, B. L. & Newman, D. K., 2004. Iron isotope fractionation by Fe(II)-oxidizing photo- autotrophic bacteria. Geochimica et Cosmochimica Acta, 68: 1227-1242.
- 22. Cullimore, D. R & McCann, A. E., 1978. The identification, cultivation and control of iron bacteria in ground water. In: Skinner, F. A. & Shevan, J. M. (eds), Aquatic Microbiology, Academic Press, London, pp. 219-261.
- 23. Dando, P. R., 2010. Biological communities at marine shallow- water vent and seep sites. In: Kiel, S. (ed.), The vent and seep biota-from microbes to ecosystems. Topics in Geomicrobiology, 33, pp. 333-378.
- 24. Davis, K. J., Nealson, K. H. & Lüttge, A., 2007. Calcite and dolomite dissolution rates in the context of microbe-mineral surface interactions. Geobiology, 5: 191-205.
- 25. Dubinina, G. & Zhdanov, V. A., 1975. Recogniiion of the iron bacteria "Siderocapsa” as arthrobacters and descripiion of Arthrobacter siderocapsulatus sp. nov. International Journal of Systematic Bacteriology, 25: 340-350.
- 26. Dymond, J., Collier, R. W. & Watwood, M. E., 1989. Bacierial mats from Crater Lake, Oregon, and their relationship to possible deep-lake hydrothermal venting. Nature, 342: 673-675.
- 27. Ehrenberg, C. G., 1836. Vorläufige Mitteilungen über das wirkliche Yorkommen fossiler Infusorien und ihre grosse Verbreitung. Poggendorf’s Annalen, 38: 213-227.
- 28. Emerion, D. & Moyer, C. L., 2002. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Application of Environmental Microbiology, 68: 3085-3093.
- 29. Ferris, F. G., Fyfe, W. S. & Beveridge, T. J., 1988. Metallic binding by Bacillus subtilis: Implications for the fossilization of microorganisms. Geology, 16: 149-152.
- 30. Fortin, D. & Langley, T. S., 2005. Formation and occurrence of biogenic iron-rich minerals. Earth-Science Reviews, 72: 1-19.
- 31. Francis, C. A. & Tebo, B. M., 1999. Marine Bacillus spores as catalysts for the oxidative precipitation and sorption of metals. Journal of Molecular Microbiology and Biotechnology, 1: 71-78.
- 32. Ghiorse, W. C. & Ehrlich, H. L., 1992. Microbial biomineralization of iron and manganese. In: Skinner, H. C. W. & Fitzpatrick, R. W. (eds), Biomineralization, Processes of Iron and Manganese, Modern and Ancient Environments. Catena (supplement), 21: 75-99.
- 33. Golonka, J., Krobicki, M., Oszczypko, N., Slączka, A. & Słomka. T., 2002. Geodynamic evolution and palaeogeography of the Polish Carpathians and adjacent areas during Neo-Cimmerian and preceding events (latest Triassic-earliest Cretaceous). In: McCann, T. & Saintot, A. (eds), Tracing tectonic deformation using the sedimentary record. Geological Society London, Special Publications, 208, pp. 138-158.
- 34. Grabowski, J., 1997. Paleomagnetic results from the Cover (High Tatric) unit and Nummulitic Eocene in the Tatra Mts (Central West Carpathians, Poland) and their tectonic implications. Annales Societatis Geologorum Poloniae, 67: 13-23.
- 35. Guzik, K., 1959. Mapa geologiczna, arkusz B2, Kominy Tylkowe. In: Guzik, K. & Sokołowski S. (eds), Mapa Geologiczna Tatr w skali 1: 10.000. Wydawnictwa Geologiczne, Warszawa.
- 36. Haese, R. R., 2000. The reactivity of iron. In: Schulz, H. D. & Zabel, M. (eds), Marine Geochemistry. Springer, Berlin, pp. 233-261.
- 37. Hanert, H. H., 2002. Bacterial and chemical iron oxide deposition in a shallow bay on Palaea Kameni, Santorini, Greece: microscopy, electron probe microanalysis, and photometry of in situ experiments. Geomicrobiology Journal, 19: 317-342.
- 38. Hanert, H. H., 2006. The Genus Siderocapsa (and other iron or manganese-oxidizing eubacteria). In: Starr, M. P. et al. (eds), The Prokaryotes. Springer, New York, pp. 1049-1060.
- 39. Harder, E. C., 1919. Iron depositing bacteria and their geologic relations. Professional Papers, Washington Printing Government Office, 113: 1-89.
- 40. Hardman, Y. & Henrici, A. T., 1939. Studies of fresh-water bacteria. V. The distribution of Siderocapsa treubii in some lakes and streams. Journal of Bacteriology, 30: 61-93.
- 41. Huckriede, H. & Meischner, D., 1996. Origin and environment of manganese-rich sediments within black-shale basins. Geochimica et Cosmochimica Acta, 60: 1399-1413.
- 42. Jurewicz, E., 2005. Geodynamic evolution of the Tatra Mts. and the Pieniny Klippen Belt (Western Carpathians): problems and comments. Acta Geologica Polonica, 55: 295-338.
- 43. Jurewicz, E., 2012. Nappe-thrusting processes in the Tatra Mts. Przegląd Geologiczny, 60: 432-441. [In Polish, with English summary.]
- 44. Karkhanis, S. N., 1976. Fossil iron bacieria may be preserved in Precambrian ferroan carbonate. Nature, 261: 406-407.
- 45. Kendall, B., Konhauser, K. O., Kappler, A. & Anbar, A., 2012. The Fe cycle. In: Knoll, A. H. et al. (eds), Fundamentals in Geobiology. Wiley-Blackwell, Oxford, pp. 65-92.
- 46. Kennedy, C. B., Martínez, R. E., Scott, S. & Ferris, F. G., 2003. Surface chemistry and reactivity of bacteriogenic iron oxides from axi al volcano, Juan de Fuca Ridge, North-East Pacific Ocean. Geobiology, 1: 59-69.
- 47. Kirby, C. S., Thomas, H. M., Southam, G. & Donald, R., 1999. Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Applied Geochemistry, 14: 511-530.
- 48. Konhauser, K. O., 1998. Diversity of bacterial iron mineralization. Earth-Science Reviews, 43: 91-121.
- 49. Konhauser, K. O. & Riding, R., 2012. Bacterial biomineralization. In: Knoll, A. H. et al. (eds), Fundamentals in Geobiology. Wiley-Blackwell, Oxford, pp. 105-130.
- 50. Koszarski, L. & Ślączka, A., 1973. Outer (flysch) Carpathians. Lower Creiaceous. In: Pożaryski W. (ed.), Geology of Poland. Instytut Geologiczny, Warszawa, pp. 492-495.
- 51. Kotański, Z., 1959. Z zagadnień transgresji albu wierchowego w Tatrach. Przegląd Geologiczny, 8: 357- 358. [In Polish.]
- 52. Kotański, Z., 1961. Tectogéncse et reconstitution de la paléogéographie de la zone haut-tatrique dans les tatras. Acta Geologica Polonica, 11: 187-412 [In Polish, with French summary.]
- 53. Krajewski, K., 1981a. Phosphate microstromatolites in the High- Tatric Albian limestone in the Polish Tatra Mts. Bulletin de l’Académie Polonaise des Sciences, Série des Sciences de la Terre, 29: 175-183.
- 54. Krajewski, K., 1981b. Pelagic stromatolites from the High-Tatric Albian limestones in the Tatra Mts. Kwartalnik Geologiczny, 25: 731-759. [In Polish, English summary.]
- 55. Krajewski, K., 1981c. Phosphate pizolite struciures from con densed limeitones of the High-Tatric Albian (Tatra Mts). Annales Societatis Geologorum Poloniae, 51: 339-352.
- 56. Krajewski, K. P., 2003. Facies development and lithostratigraphy of the Hightatric mid-Cretaceous (Zabijak Formation) in the Polish Tatra Mountains. Studia Geologica Polonica, 121: 81-158.
- 57. Książkiewicz, M., 1956. Geology of the Northern Carpathians. Geologische Rundschau, 45: 396-411.
- 58. Książkiewicz, M. (ed.), 1962. Geological Atlas of Poland; Stratigraphic and Facial Problems, vol. 13. Cretaceous and Older Paleogene in the Polish Outer Carpathians. Instytut Geologiczny. Wydawnictwa Geologiczne, Warszawa [20 maps, 20 pp. explanatory notes.]
- 59. Książkiewicz, M., 1975. Bathymetry of the Carpathian Flysch Basin. Acta Geologica Polonica, 25: 309-367.
- 60. Książkiewicz, M., 1977. Hypothesis of plate tectonics and the origin of the Carpathians. Annales Societatis Geologorum Poloniae, 47: 329-353.
- 61. Lefeld, J., 1968. Stratigiaphy and paleogeography of the High- Tatric Lower Cretaceous in the Tatra Mountains. Studia Geologica Polonica, 24: 1-115.
- 62. Lüttge, A. & Conrad, P. G., 2004. Direct observation of microbial inhibition of calcite dissolution. Applied and Environmental Microbiology, 70: 1627-1632.
- 63. Mamet, B. & Préat, A., 2006. Iron-bacterial mediation in Phanerozoic red limestones; state of the art. Sedimentary Geology, 185: 147-157.
- 64. Mamet, B., Préat, A. & De Ridder, C., 1997. Bacterial origin of the red pigmentation in the Devonian Slivenec Limestone, Czech Republic. Facies, 36: 173-188.
- 65. Marcinowski, R. & Wiedman, J., 1985. The Albian ammonite fauna of Poland and its paleogeographical significance. Acta Geologica Polonica, 35: 199-219.
- 66. Marcinowski, R. & Wiedman, J., 1990. The Albian ammonites of Poland. Palaeontologia Polonica, 50: 1-94.
- 67. Mason, G. M., 2008. Eocene age fossilized filamentous bacteria: new evidence suggesting a bacterial genesis of siderite in the Green River Formation, Wyoming. In: 28th Oil Shale Symposium 13-15 October 2008. The Colorado School of Mines, The Colorado Energy Research Institute, Golden, Colorado, pp. 1-7.
- 68. Masse, J.-P. & Uchman, A. 1997. New biostratigraphic data on the Early Cretaceous platform carbonates of the Tatra Mountains, Western Carpathians, Poland. Cretaceous Research, 18: 713-729.
- 69. Mulder, E. G. & Deinema, M. H., 1992. The sheathed bacteria. In: Balows, A., Troper, H. G., Dworkin, M., Tno, W. H. & Scheifer, K.-H. (eds), The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, Second Edition. Springer, NewYork, pp. 2612-2623.
- 70. Mulder, E. G. & Veen, W. L., van, 1963. Investigations on the Sphaerotilus - Leptothrix group. Antonie van Leeuwenhoek. Journal of Microbiology and Serology, 29: 121-153.
- 71. Nelson, Y. M., Lion, L. W., Ghiorse, W. C., & Shuler, M. L., 1999. Production of biogenic Mn oxides by Leptothrix discophora SS-1 in a chemically defined growth medium and evaluation of their Pb absorption characteristics. Applied and Environmental Microbiology, 65: 175-180.
- 72. Niegodzisz, J., 1965. Stromatolites from the High-Tatric Albian of the Tatra Mountains. Acta Geologica Polonica, 15: 529-549. [In Polish, with English summary.]
- 73. Noike, T. N., Nakamura, K. & Matsumoto, J., 1983. Oxidation of ferious iron by acidophilic iron-oxidizing barteria from a stream receiving acid mine drainage. Water Resources, 17: 21-27.
- 74. Oszczypko, N., 2004. The structural position and tectonosedimentary evolution of the Polish Outer Carpathians. Przegląd Geologiczny, 52: 780-791. [In Polish, with English summary.]
- 75. Passendorfer, E., 1930. Étude stratigraphique et paléointologique du Cretacé de la série hauttatrique darns les Tatras. Prace Państwowego Instytutu Geologicznego, 2: 351-676. [In Polish, with French summary.]
- 76. Plašienka, D., 1999. Tectonochronology and paleotectonic evolution of the Central Western Carpathians during the Jurassic and Cretaceous). Veda, Bratislava, 127 pp. [In Slovak, with English summary.]
- 77. Plašienka, D., 2003. Development of basement-involved fold and thrust strucUires eximplified by the Tatric-Fatric-Veporic nappe system of the Western Carpathians (Slovakia). Geodi- namica Acta, 16: 21-38.
- 78. Préat, A., Loreau, J. P., Durlet, C. & Mamet, B., 2000. Petrography and biosedimentology of the Rosso Ammonitico Veronese (Middle-Upper Jurassic, Northeastern Italy). Facies, 52: 265-278.
- 79. Préat, A., Mamet, B., Bernard, A. & Gillan, D., 1999. Bacierial mediation, red matrices diagenesis, Devonian, Montagne Noire (southern France). Sedimentary Geology, 126: 223-242.
- 80. Préat, A., Mamet, B., De Ridderb, C., Boulvain, F. & Gillanb, D., 2006. Iron bacterial and fungal mats, Bajocian stratotype (Mid-Jurassic, northern Normandy, France). Sedimentary Geology, 137: 107-126.
- 81. Rabowski, F., 1959. High-Tatric series in Western Tatra. Prace Instytutu Geologicznego, 27: 5-178. [In Polish, English summary.]
- 82. Rouf, M. A. & Stokes, J. L., 1964. Morphology, nufrition, and physiology of Sphaerotilus discophorus. Archives of Microbiology, 49: 132-149.
- 83. Schelble, R. T., Westall, F. & Allen, C. C., 2004. 1.8 Ga iron-mineralized microbiota from the Gunflint Iron Formation, Ontario, Canada: implications for Mars. Advances in Space Research, 33: 1268-1273.
- 84. Schopf, J. W., Barghoorn, E. S., Maser, M. D. & Gordon, R. O., 1965. Electron microscopy of fossil bacteria two billion years old. Science, 149 (3690): 1365-1367.
- 85. Schopf, J. W. & Fairchild, T. R., 1973. Late Precambrian microfosiils: a new stromatolitic biota from Boorthanna, south Australia. Nature, 242: 537-538.
- 86. Schrenk, M. O., Edwards, K. J., Goodman, R. M., Hamers, R. J. & Banfield, J. F., 1998. Disiribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science, 279: 1519-1522.
- 87. Sibuet, M. & Olu, K., 1998. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Research, 45: 517-567.
- 88. Słomka, T., Malata, T., Leśniak, T., Oszczypko, N. & Poprawa, P., 2006. Evolution of the Silesian and Subsilesian basins. In: Oszczypko et al. (eds), Palaeotectonic evolution of the Outer Carpathian and Pieniny Klippen Belt Bas ins. Instytut Nauk Geologicznych, Uniwersytet Jagielloński, Kraków, pp. 111-126.
- 89. Soggard, E. G., Medenwaldt, R. & Abraham-Peskir, J. V., 2000. Conditions and rates of biotic and abiotic iron precipitation in selected Danish fresh water plants and microscopic analysis of precipitate morphology. Water Resources, 34: 2675-2682.
- 90. Spring, S., 2002. The genera Leptothrix and Sphaerotilus. In: Dworkin, M. et al. (eds), The Prokaryotes. An Evolving Electronic Resource for the Microbiological Community, third edition. Springer, New York, www.prokaryotes.com.
- 91. Spring, S., 2006. The genera Leptothrix and Sphaerotilus. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H. & Stackebrandt, E. (eds), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology and Biochemistry. Third Edition. Volume 5. Springer, NewYork, pp. 758-777.
- 92. Statham, P. J., German, C. R. & Connelly, D. P. 2005. Iron(II) distribution and oxidation kinetics in hydrothermal plumes at the Kairei and Edmond vent sites, Indian Ocean. Earth Planetary Science Letters, 236: 588-596.
- 93. Stein, L. Y., La Duc, M. T., Grundi, T. J. & Nealson, K. H., 2001. Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environmental Microbiology, 3: 10-18.
- 94. Sun, Z. L., Zhou, H. Y., Yang, Q. H., Sun, Z. X., Bao, S. X. & Yao, H. Q., 2011. Hydrothermal Fe-Si-Mn oxide deposits from the Central and South Valu Fa Ridge, Lau Basin. Applied Geochemistry, 26: 1192-1204.
- 95. Tarasov, V. G., Gebruk, A. V., Mirononov, A. N. & Moskalev, L. L., 2005. Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? Chemical Geology, 224: 5-39.
- 96. Thorseth, I. H., Furness, H. & Tumyr, A., 1995. Texiural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chemical Geology, 119: 139-160.
- 97. Trokowicz, D., 1998. Genesis of ferromanganese nodules from the Baltic Sea. Proceedings of the Polish Geological Institute, Warsaw, 163: 1-62.
- 98. Uchman, A., 1997. Paleoenvironment of the Cretaceous marlstones in the Polish Tatra Mts. in the light of ichnological researches. Przegląd Geologiczny, 45: 1018-1023. [In Polish, English summary.]
- 99. Ullman, W. J., Kirchman, D. L. Welch, S. A. & Vandevivere, P., 1996. Laboratory evidence for microbially mediated silicate mineral dissolution innature. Chemical Geology, 132: 11-17.
- 100. Van Dover, C. L., German, C. R., Speer, K. G., Parson, L. M. & Vrijenhoek, R. C., 2002. Marine biology - evolution and biogeography of deep-sea vent and seep inveriebrates. Scii ence, 295: 1253-1257.
- 101. Van Veen, W. L., Mulder, E. G. & Deinema, M. H., 1978. The Sphaerotilus - Leptothrix group of bacieria. Microbiology Reviews, 42: 329-356.
- 102. Yongding, D., Haiming, S. & Jiying, S., 2004. Fossil bacteria in Xuanlong iron ore deposits of Hebei Province. Science China Earth Science, 47: 347-356.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c3f8944-3f2b-401e-8da9-63908434abd6