Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the forthcoming 6G wireless communication networks, it is crucial to address the challenges of massive information capacity and ultra-high data transmission rate. Terahertz (THz) band communication emerges as a promising candidate to meet these demands. However, the natural physical characteristics of THz signals, including significant attenuation in transmission and limited diffraction capabilities, pose substantial limitations on their practical applications. In recent years, reconfigurable intelligent surfaces (RIS) have garnered significant interest due to their exceptional potential in manipulating electromagnetic (EM) waves. RIS is anticipated to mitigate the challenges associated with THz communication. In this research, we introduce a RIS design featuring 1-bit phase modulation operating within THz bands. The RIS units leverage PIN diodes to dynamically adjust the unit structure, enabling dynamic encoding of the RIS metasurface based on the on and off states of diodes. In this paper, three typical application scenarios, including beam scanning, beam convolution, and radar cross section (RCS) reduction, are listed. Coding methodologies including fractional coding, convolution, Golay-Rudin-Shapiro (GRS) coding, and Genetic Algorithm (GA) coding, are deployed, and simulation results illustrate the effectiveness. This study lays the groundwork for the practical deployment and coding strategies of RIS in the THz bands, thereby facilitating the integration of THz technology into the next generation of 6G communication systems.
Rocznik
Tom
Strony
38
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology
autor
- Warsaw University of Technology
Bibliografia
- [1] K. Rikkinen, P. Kyosti, M. E. Leinonen, M. Berg, and A. Parssinen, “Thz radio communication: Link budget analysis toward 6g,” IEEE Communications Magazine, vol. 58, no. 11, pp. 22-27, 2020.
- [2] S. Dash, C. Psomas, I. Krikidis, I. F. Akyildiz, and A. Pitsillides, “Active control of thz waves in wireless environments using graphene-based ris,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 10, pp. 8785-8797, 2022.
- [3] H. Elayan, O. Amin, B. Shihada, R. M. Shubair, and M.-S. Alouini, “Terahertz band: The last piece of rf spectrum puzzle for communication systems,” IEEE Open Journal of the Communications Society, vol. 1, pp. 1-32, 2020.
- [4] Z. Wan, Z. Gao, F. Gao, M. D. Renzo, and M.-S. Alouini, “Terahertz massive mimo with holographic reconfigurable intelligent surfaces,” IEEE Transactions on Communications, vol. 69, no. 7, pp. 4732-4750,2021.
- [5] R. Su, L. Dai, and D. W. K. Ng, “Wideband precoding for ris-aided thz communications,” IEEE Transactions on Communications, vol. 71, no. 6, pp. 3592-3604, 2023.
- [6] T. Do-Duy, A. Masaracchia, B. Canberk, L. D. Nguyen, and T. Q. Duong, “Throughput maximization in ris-assisted noma-thz communication network,” IEEE Open Journal of the Communications Society, vol. 5, pp. 5706-5717, 2024.
- [7] T. Schneider, A. Wiatrek, S. Preussler, M. Grigat, and R.-P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Transactions on Terahertz Science and Technology, vol. 2, no. 2, pp. 250-256, 2012.
- [8] A. A. A. Solyman and I. A. Elhaty, “Potential key challenges for terahertz communication systems,” International Journal of Electricaland Computer Engineering (IJECE), 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:235590129
- [9] Q. Xue, C. Ji, S. Ma, J. Guo, Y. Xu, Q. Chen, and W. Zhang, “A survey of beam management for mmwave and thz communications towards 6g,” IEEE Communications Surveys and Tutorials, vol. 26, no. 3, pp. 1520-1559, 2024.
- [10] M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. de Rosny, and S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 11, pp. 2450-2525, 2020.
- [11] H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nature Communications, vol. 1, no. 1, p. 21, Jun 2010. [Online]. Available: https://doi.org/10.1038/ncomms1023
- [12] T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Science & Applications, vol. 3, no. 10, pp. e218-e218, Oct 2014. [Online]. Available: https://doi.org/10.1038/lsa.2014.99
- [13] L. Dai, B. Wang, M. Wang, X. Yang, J. Tan, S. Bi, S. Xu, F. Yang, Z. Chen, M. D. Renzo, C.-B. Chae, and L. Hanzo, “Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results,” IEEE Access, vol. 8, pp. 45 913-45 923, 2020.
- [14] H. Sheng and Z. N. Chen, “Metasurface-loaded off-center monopoles with wideband radiation performance using characteristic mode analysis,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 11, pp. 10 660-10 668, 2022.
- [15] J. C. Liang, Q. Cheng, Y. Gao, C. Xiao, S. Gao, L. Zhang, S. Jin, and T. J. Cui, “An angle-insensitive 3-bit reconfigurable intelligent surface,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 10, pp. 8798-8808, 2022.
- [16] R. Wang, Y. Yang, B. Makki, and A. Shamim, “A wideband reconfigurable intelligent surface for 5g millimeter-wave applications,” IEEE Transactions on Antennas and Propagation, vol. 72, no. 3, pp. 2399-2410, 2024.
- [17] K. Tekbiyik, G. K. Kurt, A. R. Ektı, and H. Yanikomeroglu, “Reconfigurable intelligent surfaces empowered thz communication in leo satellite networks,” IEEE Access, vol. 10, pp. 121 957-121 969, 2022.
- [18] V. R. J. Velez, J. P. C. B. B. Pavia, N. M. B. Souto, P. J. A. Sebastião, and A. M. C. Correia, “Performance assessment of a ris-empowered post-5g/6g network operating at the mmwave/thz bands,” IEEE Access, vol. 11, pp. 49 625-49 638, 2023.
- [19] Q. Zheng, W. Liu, Q. Zhao, L. Kong, Y.-H. Ren, and X.-X. Yang, “Broadband rcs reduction, antenna miniaturization, and bandwidth enhancement by combining reactive impedance surface and polarization conversion metasurface,” IEEE Transactions on Antennas and Propagation, vol. 72, no. 9, pp. 7395-7400, 2024.
- [20] https://www.mouser.hk/datasheet/2/249/MA4AGP907FCP910-838114.pdf , [Accessed 16-12-2024].
- [21] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science, vol. 334, no. 6054, pp. 333-337, 2011. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.1210713
- [22] M. Yue, L. Liu, and X. Yuan, “Practical ris-aided coded systems: Joint precoding and passive beamforming,” IEEE Wireless Communications Letters, vol. 10, no. 11, pp. 2345-2349, 2021.
- [23] S. Liu, T. jun Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. xuan Tang, M. Q. Qi, J. G. Han, W. L. Zhang, X. Y. Zhou, and Q. Cheng, “Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams,” Advanced Science, vol. 3, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:18447112
- [24] C. Zhang, J. Yang, L. X. Yang, J. C. Ke, M. Z. Chen, W. K. Cao, M. Chen, Z. H. Wu, J. F. Chen, Q. Cheng, and T. J. Cui, “Convolution operations on time-domain digital coding metasurface for beam manipulations of harmonics,” Nanophotonics, vol. 9, no. 9, pp. 2771-2781, 2020. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0538
- [25] M. Moccia, C. Koral, G. P. Papari, S. Liu, L. Zhang, R. Y. Wu, G. Castaldi, T. J. Cui, V. Galdi, and A. Andreone, “Suboptimal coding metasurfaces for terahertz diffuse scattering,” Scientific Reports, vol. 8, no. 1, p. 11908, Aug 2018. [Online]. Available: https://doi.org/10.1038/s41598-018-30375-z
- [26] M. Moccia, S. Liu, R. Wu, G. Castaldi, A. Andreone, T. Cui, and V. Galdi, “Coding metasurfaces for diffuse scattering: Scaling laws, bounds, and suboptimal design,” Advanced Optical Materials, vol. 5, 07 2017.
- [27] S. Song and R. D. Murch, “An efficient approach for optimizing frequency reconfigurable pixel antennas using genetic algorithms,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 2, pp. 609-620, 2014.
- [28] J. Rao, Y. Zhang, S. Tang, Z. Li, S. Shen, C.-Y. Chiu, and R. Murch, “A novel reconfigurable intelligent surface for wide-angle passive beamforming,” IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 12, pp. 5427-5439, 2022.
- [29] J. Jeong, J. H. Oh, S. Y. Lee, Y. Park, and S.-H. Wi, “An improved path-loss model for reconfigurable-intelligent-surface-aided wireless communications and experimental validation,” IEEE Access, vol. 10, pp. 98 065-98 078, 2022.
- [30] J.-B. Gros, V. Popov, M. A. Odit, V. Lenets, and G. Lerosey, “A reconfigurable intelligent surface at mmwave based on a binary phase tunable metasurface,” IEEE Open Journal of the Communications Society, vol. 2, pp. 1055-1064, 2021.
Uwagi
This work was supported in part by a project 101086493 — TeraHertz — HORIZON-MSCA-2021-SE-01 and by the Institute of Radioelectronics and Multimedia Technology of Warsaw University of Technology.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c3f1844-4387-4882-bbce-9ecfea6fc400
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.